PMATH 347 Groups and Rings Notes

Benjamin Chen

September 2019

1 September 9th

Defined group, rings and field
1.8 Theorem: (Cancellation)

Proof of 2
Let $a, b \in G$, suppose $a b=b$, (the case $b a=b$ is similar) Then

$$
\begin{gathered}
b a=b \\
b a=b e \\
a=e \text { by }
\end{gathered}
$$

Proof of $\mathbf{3}$

Let $a, b \in G$
Suppose $a b=e$.
Then

$$
\begin{gathered}
(a b) b^{-1}=e b^{-1} \\
a\left(b b^{-1}\right)=e b^{-1} \\
a e=e b^{-1} \\
a=b^{-1} \\
b a=b \cdot b^{-1} \\
b a=e
\end{gathered}
$$

Remark the above rules does not hold in rings in general eg, in $\mathbb{Z}_{12}, 3 \cdot 2=3 \cdot 6$ but $2 \neq 6$.
and $3 \cdot 9=3$ but $9 \neq 1$.
eg. Let $R^{\omega}=\left\{\left(a_{1}, a_{2}, \ldots\right) \mid\right.$ each $\left.a_{k} \in \mathbb{R}\right\}$ and let

$$
\begin{aligned}
R & =\operatorname{End}\left(\mathbb{R}^{\omega}\right)=\operatorname{Hom}\left(\mathbb{R}^{\omega}, \mathbb{R}^{\omega}\right) \\
& =\left\{\text { linear maps } L: \mathbb{R}^{\omega} \rightarrow \mathbb{R}^{\omega}\right\}
\end{aligned}
$$

under addition and composition
Let L be given by
$L\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{2}, a_{3}, a_{4}, \ldots\right)$
and let R be given by

$$
R\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Then $L R=I$.
but $R L \neq I$.

Subgroups

eg. In \mathbb{C}^{*} we have the subgroups
The section below is in notes actually.

$$
\begin{aligned}
C_{n} & \left.=\left\{z \in \mathbb{C}^{*} \mid z^{n}=1\right\}, \text { where } n \in \mathbb{Z}^{+}\right\} \\
& =\left\{e^{i 2 \pi k / n} \mid k \in \mathbb{Z}_{n}\right\} \\
C_{\infty}= & \bigcup_{n \in \mathbb{Z}^{+}} C_{n} \\
= & \left\{z \in \mathbb{C}^{*} \mid z^{n}=1 \text { for some } n \in \mathbb{Z}^{+}\right\} \\
& \mathbb{S}^{\prime}=\left\{z \in \mathbb{C}^{*} \| z \mid=1\right\}
\end{aligned}
$$

When R is a commutative ring with 1 , we have the following subgroups of the general linear group

$$
\begin{aligned}
G L_{n}(R) & =\left\{A \in M_{n}(R) \mid A \text { is invertible }\right\} \\
& =\left\{A \in M_{n}(R) \mid \operatorname{det} A \text { is a unit in } \mathrm{R}\right\}
\end{aligned}
$$

The special linear group

$$
S L_{n}(R)=\left\{A \in G L_{n}(R) \mid \operatorname{det} A=1\right\}
$$

eg.

$$
\begin{aligned}
O_{2}(R) & =\left\{(u, v)\left|u \in \mathbb{R}^{2}, v \in \mathbb{R}^{2},|u|=1,|v|=1, u \cdot v=0\right\}\right. \\
& =\left\{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \left.\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right] \right\rvert\, \theta \in \mathbb{R}(\text { or } \theta \in[0,2 r])\right\} \\
& =\left\{R_{\theta}, F_{\theta} \mid \theta \in \mathbb{R}\right\}
\end{aligned}
$$

where $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], F_{\theta}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

2 September 11th raw notes

$O_{2}(\mathbb{R})=\left\{R_{\theta}, F_{\theta} \mid \theta \in \mathbb{R}\right\}$
R_{θ} : rotation F_{θ} : reflection
Let us find a matrix formula for the rotation in \mathbb{R}^{2} about $O=(0,0)$ by θ. (counterclockwise)
See Pictures
Let's find a matrix formula for the reflection F_{θ} in the line in \mathbb{R}^{2}, through $0=(0,0)$, which makes the angle $\frac{\theta}{2}$ with the positive x-axis.
Solution:
When L has normal unit vector n, ${ }^{\text {‘ }}$
When L is the line through o which makes the angle $\frac{\theta}{2}$ with
See Pictures.
$O_{n}(\mathbb{R})=\left\{A \in M_{n}(R), A^{T} A=I\right\} \leq G L_{n}(R)$
1.32 Theorem: (The Subgroup Test I)

Theorem: Subgroup Test I
Proof:
In order for H to be subgroup, we need (2) to hold so that $*$ restricts to give a well-defined operation or H. If H has an identity elements e_{H}, then $e_{H} * e_{H}=$ E_{H} is inclusive.
Then $G_{H} * G_{H}$ inP So $e_{H}+e_{H}=e_{H}$ in G $G_{H}=e_{G}$ by cancellation
If $a \in H$ has an inverse in H, say $a * b=b * a=e$ in H.
THen we also have $a * b=b * a$ in G.
So must have $b=a^{-1}$ in G
Thus, for H to be a subgroup of G, properties (1), (2), and (3) hold.
When (1), (2), and (3) hold, note that $*$ is automatically associative in H because it is associative in G.
So H is a subgroup of G.
Remark, when R is a ring with identity 1_{R} and S is subring of R with identity 1_{S}, it is not always the case that $1_{S}=1_{R}$.
and when $a \in S$ has an inverse in S, that inverse is not always an inverse for a in R.
Examples:
When $R=\mathbb{Z}_{12}$ and $S=3 \mathbb{Z}_{12}=\{0,3,6,9\}$. The multiplication operation in S is given by
A table.
See picture.
We see that $1_{S}=9$, but $1_{R}=1$.
and that the inverse of 3 in S is 3 . But 3 has no inverse in \mathbb{Z}_{12}
eg.
When R is a commutative ring,
$O_{n}(R) \leq G L_{n}(R)$
because
if $A \in O_{n}(R)$, then $A^{T} A=I$.
So $|A|^{2}=1$ so $|A|$ is a unit in R.
so $A \in G L_{n}(R)$
This shows that $O_{n}(R) \subseteq G L_{n}(R)$.
and
See pictures.
$|G|$
For $a \in G \ldots$

3 September 11th

Let us find a matrix formula for the rotation in \mathbb{R}^{2} about $O=(0,0)$ by θ (counterclockwise).
If $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}r \cos \psi \\ r \sin \psi\end{array}\right]$
then the rotation R_{θ} about 0 by θ is given by

$$
\begin{aligned}
R_{\theta}\left[\begin{array}{l}
x \\
y
\end{array}\right] & =R_{\theta}\left[\begin{array}{l}
r \cos \psi \\
r \sin \psi
\end{array}\right] \\
& =\left[\begin{array}{c}
r \cos (\theta+\psi) \\
r \sin (\theta+\psi)
\end{array}\right] \\
& =\left[\begin{array}{c}
r \cos \theta \cos \psi-r \sin \theta \sin \psi \\
r \sin \theta \cos \psi+r \cos \theta \sin \psi
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

Thus, we have $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
Let us find a matrix formula for the reflection F_{θ} in the line in \mathbb{R}^{2} through $O=(0,0)$ which makes the angle $\frac{\theta}{2}$ with the positive x-axis.

Solution:

When L has unit normal vector n. Recall that

$$
\operatorname{Proj}_{n} x=(x \cdot n) \cdot n
$$

So the reflection in the line L.

$$
\begin{aligned}
F_{L}(x) & =x-2 \operatorname{Proj}_{n} x \\
& =x-2(x \cdot n) n \\
& =x-2\left(n^{T} x\right) n \\
& =x-2 n n^{T} x \quad \text { Using matrix multiplication }
\end{aligned}
$$

Thus, $F_{L}(x)=\left(I-2 n n^{T}\right) x$
That, $F_{L}=I-2 n n^{T}$
(eg. If L has equation $a x+b y+c=0$. We can take $n=\frac{(a, b)^{T}}{\sqrt{\left(a^{2}+b^{2}\right)}}$)
So

$$
\begin{aligned}
F_{L}\binom{x}{y} & =\left(I-2 n n^{T}\right)\binom{x}{y} \\
& =\left(I-\frac{2}{a^{2}+b^{2}}\left(\begin{array}{ll}
a^{2} & a b \\
a b & a^{2}
\end{array}\right)\right)\binom{x}{y}
\end{aligned}
$$

Side note: $\binom{a}{b}\left(\begin{array}{ll}a & b\end{array}\right)=\left(\begin{array}{ll}a^{2} & a b \\ a b & a^{2}\end{array}\right)$
When L is the line through O which makes the angle $\frac{\theta}{2}$ with the positive x-axis. 1 A unit direction vector for L is $u=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}$
and a unit normal vector is

$$
n=\binom{-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}
$$

So

$$
\begin{aligned}
& F_{\theta}=F_{L}=I-2 n n^{T} \\
& =I-2\binom{-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\left(\begin{array}{ll}
-\sin \frac{\theta}{2} \quad \cos \frac{\theta}{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \\
& \\
& O_{n}(R)=\left\{A \in M_{n}(R) \mid A^{T} A=I\right\} \\
& \\
& \leq G L_{n}(R)
\end{aligned}
$$

Theorem: (Subgroup Test I)
Let G be a group with identity $e=e_{G}$ and operation $*$, and let $H \subseteq G$ be a subset.
Then, $H \leq G$ (that is H is a subgroup of G) if and only if

1. $e \in H$
2. H is closed under $*$ for all $a, b \in H$, we have $a * b \in H$
3. H is closed under inversion for all $a \in H$, we have $a^{-1} \in H$.

Proof:

In order for H to be a subgroup, we need (2) to hold so that $*$ restricts to give a well-defined operation on H.
If H has an identity element e_{H}, then $e_{H} * e_{H}=e_{H}$ in H.
So $e_{H} * e_{H}=e_{H}$ in G
So $e_{H}=e_{G}$. by cancellation in G.
If $a \in H$ has an inverse in H,
say $a * b=b * a=e$ in H.
Then, we also have $a * b=b * a$ in G, so must have $b=a^{-1}$ in G
Thus, for H to be a subgroup of G properties (1), (2) and (3) hold.
When (1), (2), and (3) hold, note that $*$ is automatically associative in H because it is associative in G.
So H is a subgroup of G.

Remark:

When R is a ring with identity 1_{R} and S is a subring of R with identity 1_{S}, it is not always the case that $1_{S}=1_{R}$ and when $a \in S$ has an inverse in S, that inverse is not always an inverse for a in R.
For example, when $R=\mathbb{Z}_{12}$, and $S=3 \mathbb{Z}_{12}=\{0,3,6,9\}$. The multiplication operation in S is given by:

	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{9}$
$\mathbf{0}$	0	0	0	0
$\mathbf{3}$	0	9	6	3
$\mathbf{6}$	0	6	0	6
$\mathbf{9}$	0	3	6	9

We see that $1_{S}=9$ but $1_{R}=1$, and that the inverse of 3 in S is 3 but 3 has no inverse in \mathbb{Z}_{12}.
When R is a commutative ring,
Eg.

$$
O_{n}(R) \leq G L_{n}(R)
$$

because
if $A \in O_{n}(R)$, then $A^{T} A=I$
So $|A|^{2}=1$, so $|A|$ is a unit in R . So $A \in G L_{n}(R)$.
(This shows that $O_{n}(R) \subseteq G L_{n}(R)$)
and

1. $I \in O_{n}(R)$, Since $\left(I^{T} I=T\right)$.
2. if $A, B \in O_{n}(R)$, then

$$
\begin{aligned}
(A B)^{T}(A B) & =B^{T} A^{T} A B \\
& =B^{T} I B \\
& =B^{T} B \\
& =I
\end{aligned}
$$

3. If $A \in O_{n}(R),\left(A^{T} A=I\right)$
then

$$
\begin{aligned}
\left(A^{-1}\right)^{T} A^{-1} & =\left(A^{T}\right)^{-1} A^{-1} \\
& =\left(A A^{T}\right)^{-1}=I^{-1}=I
\end{aligned}
$$

because when $A^{T} A=I, A$ is invertible with $A^{-1}=A^{T}$.
So $A A^{T}=I$.
$|G|=$ number of elements in G when G is finite
For $a \in G=\left\{\begin{array}{l}\text { smallest } \ell \in \mathbb{Z}^{+} \quad a^{\ell}=e \\ \infty \text { if no such } \ell \text { exists }\end{array}\right.$

4 September 13th

Definition:

Let G be a group. The order of G, denoted by ord (G) or by $|G|$, is the cardinality of G :
So we have

$$
|G|=\left\{\begin{array}{l}
\text { the number of elements in } G, \text { if } G \text { is finite } \\
\infty, \text { if } G \text { is infinite }
\end{array}\right.
$$

For $a \in G$, the order of a in G, denoted by ord a or $\operatorname{ord}_{G}(a)$ or by $|a|$, is
$|a|= \begin{cases}\text { the smallest positive integer } n \in \mathbb{Z}^{+} & \text {if such a positive integer exists }, \\ \text { such that } a^{n}=e & \text { if no such positive integer exists } .\end{cases}$
Eg.

$$
\begin{gathered}
\left|\mathbb{Z}_{n}\right|=n \\
\left|U_{n}\right|=\phi(n)
\end{gathered}
$$

where
$\phi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$is the Euler phi function (also called the Euler totient function)
By definition, $\phi(n)=\left|U_{n}\right|=$ number of $\{1 \leq k \leq n \mid \operatorname{gcd}(k, n)=1\}$
eg. When p is a prime

$$
\phi(p)=p-1
$$

because $U_{p}=\mathbb{Z}_{p} \backslash\{0\}$, so $\left|U_{p}\right|=p-1$.
and when $k \in \mathbb{Z}^{+}$,
$\phi\left(p^{k}\right)=p^{k}-p^{k-1}$
Because $U_{p^{k}}=\left\{1,2,3, \ldots, p^{k}=0\right\} \backslash\left\{p, 2 p, 3 p, \ldots, p^{k}\right\}$
We shall prove later that when $n=\prod_{i=1}^{l} p_{i}^{k_{i}}$ where the p_{i} are distinct primes,

$$
\phi(n)=\prod_{i=1}^{l} \phi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{l}\left(p_{i}^{k_{i}}-p_{i}^{k_{i}-1}\right)
$$

Eg. When p and q are distinct primes

$$
\phi(p q)=\left|U_{p q}\right|=(p-1)(q-1)
$$

Eg. Find the order of the group $G L_{n}\left(\mathbb{Z}_{p}\right)$ where p is prime.

Solution:

We need to count the number of matrices $A \in G L_{n}\left(\mathbb{Z}_{p}\right)$, say $A=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ with each $u_{k} \in \mathbb{Z}_{p}^{n}$.
For A to be invertible, the columns need to be linearly independent.
We need the first column u_{1} to be non-zero. So the number of possible ways to choose $u_{1} \in \mathbb{Z}_{p}^{n} \backslash\{0\}$ is $p^{n}-1$.
Having chosen u_{1}, the second column u_{2} can be any vector in \mathbb{Z}_{p}^{n} which is not in $\operatorname{Span}\left\{u_{1}\right\}=\left\{t u_{1} \mid t \in \mathbb{Z}_{p}\right\}$
Since $\left|\operatorname{Span}\left\{u_{1}\right\}\right|=p$, there are $p^{n}-p$ choices for u_{2}.
Having chosen u_{1}, u_{2}, we can choose u_{3} to be any element in $\mathbb{Z}_{p}^{n} \backslash \operatorname{Span}\left\{u_{1}, u_{2}\right\}$ and $\operatorname{Span}\left\{u_{1}, u_{2}\right\}=\left\{t_{1} u_{1}+t_{2} u_{2} \mid t_{1}, t_{2} \in \mathbb{Z}_{p}\right\}$. So that $\left|\operatorname{Span}\left\{u_{1}, u_{2}\right\}\right|=p^{2}$.
So the number of possible choices for u_{3} is $p^{n}-p^{2}$.
This continues similarly for each column.
Thus, $\left|G L_{n}\left(\mathbb{Z}_{p}\right)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \ldots\left(p^{n}-p^{n-1}\right.$
If we had $s_{1} u_{1}+s_{2} u_{2}=t_{1} u_{1}+t_{2} u_{2}$, then $s_{1}=t_{1}$ and $s_{2}=t_{2}$.
Exercise: Show that $\left|G L_{2}(\mathbb{Z})\right|=\infty$
Exercise: Show that if $a \in G$ and $b \in H$, and $\operatorname{ord}_{G}(a)=n$ and $\operatorname{ord}_{H}(b)=m$
then $\operatorname{ord}_{G \times H}(a, b)=\operatorname{lcm}(n, m)=\frac{m n}{\operatorname{gcd}(n, m)}$
Note: If G is an additive abelian group, and $a \in G$, then

$$
|a|=\text { the smallest } n \in \mathbb{Z}^{+} \text {such that } n a=0 \text { (if such a } n \in \mathbb{Z}^{+} \text {exists) }
$$

Eg. In \mathbb{Z}_{20}, find $|6|=\operatorname{ord}(6)$
Additive notation.
Brute force
Solution:

k	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{k} \cdot 6$	0	6	12	18	4	10	16	2	8	14	0

So $|6|=10$ in \mathbb{Z}_{20}.
Eg. Find $|7|$ in U_{100}
Solution:
Make a multiplication table and figure out that $|7|=4$.

4.1 Chapter 2 Cyclic Groups and Generators

Note that if G is a group and $H_{k} \leq G$ for each $k \in K$. Then $\bigcap_{k \in K} H_{k} \leq G$ by the Subgroup Test.

1. $e \in H_{k}$ for all $k \in K$ So $e \in \bigcap_{k \in K} H_{k}$
2. If $a, b \in \bigcap_{k \in K} H_{k}$, then for every $k \in K, a, b \in H_{k}$, so $a b \in H_{k}$ Since $a b \in H_{k}$ for every $k \in K$, we have $a b \in \bigcap_{k \in K} H_{k}$.
3. Similarly, if $a \in \bigcap_{k \in K} H_{k}$, then $a^{-1} \in \bigcap_{k \in K} H_{k}$

Definition:

Let G be a group and let $S \subseteq G$ be a subset. The subgroup of G generated by S, denoted by $\langle S\rangle$, is the smallest subgroup of G which contains S.
Equivalently, $\langle S\rangle$ is the intersection of the set of all subgroups of G which contains S.
When S is the finite set, we often omit the set brackets and write

$$
\left\langle\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right\rangle=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
$$

A cyclic group is a group G such that $G=\langle a\rangle$ for some $a \in G$.
If G is any group and $a \in G$, then $\langle a\rangle$ is a cyclic subgroup of G.
Theorem: (Elements in a Cyclic Group)
Let G be a group and let $a \in G$

1. $\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$
2. If $|a|=\infty$, then for $k, l \in \mathbb{Z}$, we have $a^{k}=a^{l} \Longleftrightarrow k=l$. (So the elments, $a^{k}, k \in \mathbb{Z}$ are distinct)
3. If $|a|=n$, then for $k, l \in \mathbb{Z}$, we have $a^{k}=a^{l} \Longleftrightarrow k=l \bmod n$ (So we have $\langle a\rangle=\left\{a^{k} \mid 0 \leq k \leq n\right\}=\left\{a^{k} \mid k \in \mathbb{Z}_{n}\right\}$ with the listed elements distinct)

Proof:

1. $\langle a\rangle$ is the smallest subgroup of G which contains a. Since $a \in\langle a\rangle$, by closure under the operation and inversion and induction, $a^{k} \in\langle a\rangle$ for all $k \in \mathbb{Z}$.
So $\left\{a^{k} \mid k \in \mathbb{Z}\right\} \subseteq\langle a\rangle$.

5 September 16th

Elements in Cyclic Group (Continue)

1. Also, note that $H=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$ is a subgroup of G because
(a) $e=a^{0} \in H$
(b) For $k, l \in \mathbb{Z}$
$a^{k} \cdot a^{l}=a^{k+l} \in H$, and
(c) For $k \in \mathbb{Z}$,
$\left(a^{k}\right)^{-1}=a^{-k} \in H$
Since $a \in H$ and $H \leq G$, it follows that $\langle a\rangle \subseteq H$.
2. Suppose $|a|=\infty$, (this means there is no positive integer r such that $\left.a^{r}=e\right)$.

Let $k, l \in \mathbb{Z}$,
If $k=l$, then of course $a^{k}=a^{l}$.
Suppose that $a^{k}=a^{l}$
Suppose $k \neq l$, say $k<l$. Then

$$
\begin{aligned}
a^{k} \cdot a^{-k} & =a^{l} \cdot a^{-k} \\
e & =a^{l-k}
\end{aligned}
$$

This contradicts the fact that there is no $r \in \mathbb{Z}^{+}$such that $a^{r}=e$.
3. Suppose $|a|=n$. (So n is the smallest positive integer such that $a^{n}=e$)

If $k=l \bmod n$,
say $l=k+n q$ with $q \in \mathbb{Z}$
Then

$$
\begin{aligned}
a^{l} & =a^{k+n q}=a^{k} \cdot a^{n q} \\
& =a^{k} \cdot\left(a^{n}\right)^{q}=a^{k} e^{q} \\
& =a^{k} e=a^{k}
\end{aligned}
$$

Suppose, conversely, that $k, l \in \mathbb{Z}$ and $a^{k}=a^{l}$.
Then

$$
\begin{aligned}
& a^{k} \cdot a^{-k}=a^{l} \cdot a^{-k} \\
& e=a^{l-k}
\end{aligned}
$$

Use the Division Algorithm, to write

$$
l-k=q \cdot n+r
$$

with $q, r \in \mathbb{Z}$ and $0 \leq r<n$.
Then

$$
\begin{aligned}
e & =a^{l-k}=a^{q \cdot n+r} \\
& =\left(a^{n}\right)^{q} \cdot a^{r}=e \cdot a^{r}=a^{r}
\end{aligned}
$$

Thus, we must have $r=0$
(Otherwise, r would be a positive integer less than n with $a^{r}=e$, contradicting the fact that $|a|=n)$.
Since $r=0$, we have

$$
l-k=q n+r=q n
$$

So $l=k+q n$, hence $l=k \bmod n$.
Corollary:
When G is a group and $a \in G$, we have

$$
|a|=|\langle a\rangle|
$$

Theorem: (Subgroups of Cyclic Groups)

Let G be a group and let $a \in G$.

1. Every subgroup of $\langle a\rangle$ is cyclic.
2. If $|a|=\infty$, then for $k, l \in \mathbb{Z}$, we have

$$
\left\langle a^{k}\right\rangle=\left\langle a^{l}\right\rangle \Longleftrightarrow l= \pm k
$$

So the distinct subgroups of $\langle a\rangle$ are
The trivial group $\left\langle a^{0}\right\rangle=\{e\}$
and the groups $\left\langle a^{k}\right\rangle$ with $k \in \mathbb{Z}^{+}$.
3. If $|a|=n$, then for $k, l \in \mathbb{Z}$, we have

$$
\begin{aligned}
\left\langle a^{k}\right\rangle= & \left\langle a^{l}\right\rangle \\
& \Longleftrightarrow \operatorname{gcd}(k, n)=\operatorname{gcd}(l, n)
\end{aligned}
$$

and if $d=\operatorname{gcd}(k, n)$.

Then

$$
\begin{aligned}
\left\langle a^{k}\right\rangle & =\left\langle a^{d}\right\rangle \\
& =\left\{a^{0}, a^{d}, a^{2 d}, \ldots, a^{n-d}\right\} \\
& =\left\{a^{k d} \mid k \in \mathbb{Z}_{n / d}\right\}
\end{aligned}
$$

So the distinct subgroups of $\langle a\rangle$ are the groups

$$
\left\langle a^{d}\right\rangle=\left\{a^{k d} \mid k \in \mathbb{Z}_{n / d}\right\}
$$

where d is a positive divisor of n.
Note that: $n-d=\left(\frac{n}{d}-1\right) d$
(Otherwise, r would be a positive integer less than n with $a^{r}=e$, contradicting the fact that $|a|=n$).
Since $r=0$, we have

$$
l-k=q n+r=q n
$$

So $l=k+q n$, hence $l=k \bmod n$

Proof:

(a) Let $H \leq\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}$.

If $H=\{e\}$, then $H=\left\langle a^{0}\right\rangle$ (which is cyclic).
Suppose $H \neq\{e\}$
Choose $t \in \mathbb{Z}$ so $e=a^{t} \in H$.
Note that $a^{-t}=\left(a^{t}\right)^{-1} \in H$ too
So we have $a^{|t|} \in H$ with $|t|>0$.
Let n be the smallest positive integer such that $a^{n} \in H$
We claim that $H=\left\langle a^{n}\right\rangle$.
Since $a^{n} \in H$, we have

$$
a^{k n} \in H
$$

for all $k \in \mathbb{Z}$.
So $\left\langle a^{n}\right\rangle=\left\{a^{k n} \mid k \in \mathbb{Z}\right\} \subseteq H$
We need to show that

$$
H \subseteq\left\langle a^{n}\right\rangle=\left\{a^{k n} \mid t \in \mathbb{Z}\right\}
$$

Let $l \in \mathbb{Z}$ with $a^{l} \in H$.
write $l=q n+r$ with $0 \leq r<n$.

Then

$$
\begin{aligned}
a^{r} & =a^{l-q n} \\
& =a^{l} \cdot\left(a^{n}\right)^{-q} \\
& \in H
\end{aligned}
$$

Since $a^{l} \in H$ and $a^{n} \in H$.
Since n is the smallest positive integer for which $a^{n} \in H$, we must have $r=0$
Thus,

$$
\begin{aligned}
l & =q n \\
a^{l} & =\left(a^{n}\right)^{q} \in\left\langle a^{n}\right\rangle
\end{aligned}
$$

Thus, $H \subseteq\left\langle a^{n}\right\rangle$
September 18th:
(b) Part 2 as an exercise
(c) Suppose $|a|=n$,

So $\langle a\rangle=\left\{a^{0}, a^{1}, a^{2}, \ldots, a^{n-1}\right\}$
Note that if d is a positive divisor of n, then,

$$
\begin{aligned}
\langle a\rangle= & \left\{a^{0}, a^{d}, a^{2} d, \ldots, a^{n-d}\right\} \\
& =\left\{a^{k d} \mid k \in \mathbb{Z}_{n / d}\right\}
\end{aligned}
$$

By the definition of order:
with $\left|a^{d}\right|=\left|\left\langle a^{d}\right\rangle\right|=\frac{n}{d}$
It follows from the previous theorem:
We claim that for any integer $k \in \mathbb{Z}$, we have

$$
\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle
$$

where $d=\operatorname{gcd}(k, n)$
Let $k \in \mathbb{Z}$ and let $d=\operatorname{gcd}(k, n)$
Since $d \mid k$, it follows that

$$
a^{k} \in\left\langle a^{d}\right\rangle=\left\{a^{q d} \mid q \in \mathbb{Z}\right\}
$$

Hence,

$$
\left\langle a^{k}\right\rangle \leq\left\langle a^{d}\right\rangle
$$

Also, because $d=\operatorname{gcd}(k, n)$, we can choose $s, t \in \mathbb{Z}$ so that $d=$ $k s+n t$.

It follows that

$$
\begin{aligned}
a^{d} & =a^{k s+n t}=\left(a^{k}\right)^{s} \cdot\left(a^{n}\right)^{t} \\
& =\left(a^{k}\right)^{s} \text { since } a^{n}=e
\end{aligned}
$$

Hence, $a^{d} \in\left\langle a^{k}\right\rangle=\left\{a^{k s} \mid s \in \mathbb{Z}\right\}$
Hence, $\left\langle a^{d}\right\rangle \leq\left\langle a^{k}\right\rangle$.
Thus, $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$, where $d=\operatorname{gcd}(k, n)$, as claimed.
Now, let $k, l \in \mathbb{Z}$.
If $\operatorname{gcd}(k, n)=\operatorname{gcd}(l, n)=d$,
then $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle=\left\langle a^{l}\right\rangle$
Suppose that $\left\langle a^{k}\right\rangle=\left\langle a^{l}\right\rangle$ and let $d=\operatorname{gcd}(k, n)$ and $c=\operatorname{gcd}(l, n)$.
Then

$$
\begin{aligned}
\left\langle a^{d}\right\rangle=\left\langle a^{k}\right\rangle & =\left\langle a^{l}\right\rangle=\left\langle a^{c}\right\rangle \\
\left|\left\langle a^{d}\right\rangle\right| & =\left|\left\langle a^{c}\right\rangle\right| \\
\frac{n}{d} & =\frac{n}{c} \\
d & =c
\end{aligned}
$$

Eg. In the $C_{12}=\left\{z \in \mathbb{C}^{*} \mid z^{12}=1\right\}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{11}\right\}=\langle a\rangle$
The divisors of 12 are $1,2,3,4,6,12$.
The distinct subgroups of C_{12} are:

$$
\begin{aligned}
\left\langle a^{1}\right\rangle & =\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}, \alpha^{7}, \alpha^{8}, \alpha^{9}, \alpha^{1} 0, \alpha^{1} 1\right\}=C_{12} \\
\left\langle\alpha^{2}\right\rangle & =\left\{1, \alpha^{2}, \alpha^{4}, \alpha^{6}, \alpha^{8}, \alpha^{10}\right\}=C_{6} \\
\left\langle\alpha^{3}\right\rangle & =\left\{1, \alpha^{3}, \alpha^{6}, \alpha^{9}\right\}=C_{4} \\
\left\langle\alpha^{4}\right\rangle & =\left\{1, \alpha^{4}, \alpha^{8}\right\}=C_{3} \\
\left\langle\alpha^{6}\right\rangle & =\left\{1, \alpha^{6}\right\}=\{ \pm 1\}=C_{2} \\
\left\langle\alpha^{12}\right\rangle & =\{1\}=C_{1}
\end{aligned}
$$

Corollary (Orders of Elements in Cyclic Groups):

For $a \in G$,
If $|a|=\infty$, then $\left|a^{0}\right|=1$
and $\left|a^{k}\right|=\infty$ for $0 \neq k \in \mathbb{Z}$.
If $|a|=n$, then for $k \in \mathbb{Z},\left|a^{k}\right|=\frac{n}{\operatorname{gcd}(k, n)}$.
Corollary (Generators of Cyclic Groups):
For $a \in G$,
If $|a|=\infty$, then for $k \in \mathbb{Z}$

$$
\left\langle a^{k}\right\rangle=\langle a\rangle \Longleftrightarrow k= \pm 1
$$

and if $|a|=n$, then for $k \in \mathbb{Z}$ (or for $k \in \mathbb{Z}_{n}$).

$$
\left\langle a^{k}\right\rangle=\langle a\rangle \Longleftrightarrow \operatorname{gcd}(k, n)=1 \Longleftrightarrow k \in U_{n}
$$

$C_{12}=\langle\alpha\rangle=\left\langle\alpha^{5}\right\rangle=\left\langle\alpha^{7}\right\rangle=\left\langle\alpha^{11}\right\rangle$.
$\alpha=e^{i 2 \pi / 12}$

Corollary (The Number of Generators in a Cyclic Group):

For $a \in G$,
If $|a|=\infty$, then the number of elements in $\langle a\rangle$ which generate $\langle a\rangle$ is equal to 2.
And if $|a|=n$, then the number of generators of $\langle a\rangle$ (the number of elements $b \in\langle a\rangle$ such that $\langle b\rangle=\langle a\rangle)$ is equal to $\phi(n)=\left|U_{n}\right|$.
Corollary (The Number of Elements of Each Order in a Cyclic Group):
Let $a \in G$,
If $|a|=\infty$, then in $\langle a\rangle$, there is 1 element of order 1 . (namely $\left.a^{0}=e\right)$.
and if $|a|=n$, then in $\langle a\rangle$, the order of every element in $\langle a\rangle$ is a positive divisor of n and given a positive divisor, d of n, the number of elements in $\langle a\rangle$ of order d is $\phi(d)$.
Corollary (Number of Elements of Each Order in a Finite Group):
If G is a finite group, then for each $d \in \mathbb{Z}^{+}$.
The number of elements in G of order d is a multiple of $\phi(d)$; indeed
it is equal to $\phi(l)$ multiplied by the number of distinct cyclic subgroups of order d in G.

Corollary:
For $n \in \mathbb{Z}^{+}$, we have

$$
n=\sum_{d \mid n} \phi(d)
$$

\sum $\mathrm{d}-\mathrm{n}$: Sum of all positive divisors
(where the sum is taken over all the positive divisors of n)
Example:
In $\mathbb{Z}_{12}=\langle 1\rangle$
We have the subgroups with generators bolded.

$$
\begin{aligned}
\langle 1\rangle & =\{0, \mathbf{1}, 2,3,4, \mathbf{5}, 6, \mathbf{7}, 8,9,10, \mathbf{1 1}\} \\
\langle 2\rangle & =\{0, \mathbf{2}, 4,6,8, \mathbf{1 0}\} \\
\langle 3\rangle & =\{0, \mathbf{3}, 6, \mathbf{9}\} \\
\langle 4\rangle & =\{0, \mathbf{4}, \mathbf{8}\} \\
\langle 6\rangle & =\{0, \mathbf{6}\} \\
\langle 12\rangle & =\{\mathbf{0}\}
\end{aligned}
$$

6 September 20th

Theorem:

Let G be a group and let $S \subseteq G$ be a subset. Then

$$
\begin{aligned}
\langle S\rangle & =\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{l}^{k_{l}} \mid l \in \mathbb{N}, a_{i} \in S, k_{i} \in \mathbb{Z}\right\} \\
& =\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{l}^{k_{l}} \mid l \in \mathbb{N}, a_{i} \in S \text { with } a_{i} \neq a_{i+1}, k_{i} \in \mathbb{Z} \text { with } k_{i} \neq 0\right\}
\end{aligned}
$$

where $\mathbb{N}=\{0,1,2, \ldots\}$
and we use the convention that the empty product, $\left(a_{1}^{k_{1}}, \ldots, a_{l}^{k_{l}}\right.$ with $\left.l=0\right)$. is the identity $e \in G$
If G is abelian, then

$$
\langle S\rangle=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{l}^{k_{l}} \mid l \in \mathbb{N}, a_{i} \in S \text { with } a_{i} \neq a_{j} \text { when } i \neq j, 0 \neq k_{i} \in \mathbb{Z}\right\}
$$

If G is an additive abelian group, then

$$
\begin{aligned}
\langle S\rangle & =\left\{k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{l} a_{l} \mid l \in \mathbb{N}, a_{i} \in S \text { with } a_{i} \neq a_{j} \text { when } i \neq j, 0 \neq k_{i} \in \mathbb{Z}\right\} \\
& =\operatorname{Span}_{\mathbb{Z}}(S)
\end{aligned}
$$

Sketch Proof:

Let $H=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{l}^{k_{l}} \mid l \in \mathbb{N}, a_{i} \in S, k \in \mathbb{Z}\right\}$
By the definition of $\langle S\rangle$, we have $a_{i} \in\langle S\rangle$ for all i (Since $a_{i} \in S$) Hence, every element $a^{k_{1}} a^{k_{1}} \ldots a^{k_{l}} \in H$ lies in $\langle S\rangle$.
By closure of $\langle S\rangle$ under the operation and inversion. So we have $H \subseteq\langle S\rangle$.
Also, note that $H \leq G$ because $e \in H$ (by taking $l=0$) and since the product of two elements of H lies in H.

$$
\left(a_{1}^{j_{1}} a_{2}^{j_{2}} \ldots a_{l}^{j_{l}}\right)\left(b_{1}^{k_{1}} b_{2}^{k_{2}} \ldots b_{m}^{k_{m}}\right)=a_{1}^{j_{1}} a_{2}^{j_{2}} \ldots a_{l}^{j_{l}} b_{1}^{k_{1}} b_{2}^{k_{2}} \ldots b_{m}^{k_{m}}
$$

and the inverse of each element of H lies in H.

$$
\left(a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{l}^{k_{l}}\right)^{-1}=a_{l}^{-k_{l}} \ldots a_{2}^{-k_{2}} a_{1}^{-k_{1}}
$$

Since $S \subseteq H$ (if $a \in S$ then $a=a^{1} \in H$) and $H \leq G$ it follows that $\langle S\rangle \subseteq H$. If $a_{i}=a_{i+1}$
Then

$$
a_{1}^{k_{1}} \ldots a_{i}^{k_{i}} a_{i+1}^{k_{i+1}} \ldots a_{l}^{k_{l}}=a_{1}^{k_{1}} \ldots a_{i}^{k_{i}+k_{i+1}} a_{i+2}^{k_{i+2}} \ldots a_{l}^{k_{l}}
$$

If $k_{i}=0$, then

$$
a_{1}^{k_{1}} \ldots a_{i}^{k_{i}} a_{i+1}^{k_{i+1}} \ldots a_{l}^{k_{l}}=a_{1}^{k_{1}} \ldots a_{i-1}^{k_{i-1}} a_{i+1}^{k_{i+1}} \ldots a_{l}^{k_{l}}
$$

Examples:

In $\mathbb{Z}^{2}\left(\right.$ or in \mathbb{Q}^{2} or $\left.\mathbb{R}^{2}\right)$,

$$
\begin{aligned}
\langle(3,1),(1,2)\rangle & =\{s(3,1)+t(1,2) \mid s, t \in \mathbb{Z}\} \\
& =\operatorname{Span}_{\mathbb{Z}}\{(3,1),(1,2)\} \\
& =\operatorname{Span}_{\mathbb{Z}}\{(5,0),(2,-1)\} \\
& =\langle(5,0),(2,-1)\rangle
\end{aligned}
$$

Because

$$
\begin{aligned}
& (5,0)=2(3,1)-1(1,2) \in\langle(3,1),(1,2)\rangle \\
& (2,-1)=(3,1)-(1,2) \in\langle(3,1),(1,2)\rangle
\end{aligned}
$$

So

$$
\langle(5,0),(2,1)\rangle \leq\langle(3,1),(1,2)\rangle
$$

And similarly

$$
\begin{gathered}
(3,1)=(5,0)-(2,-1) \\
(1,2)=(5,0)-2(2,-1)
\end{gathered}
$$

So $\langle(3,1),(1,2)\rangle \leq\langle(5,0),(2,-1)\rangle$
Eg.
Recall that

$$
O_{2}(\mathbb{R})=\left\{R_{\theta}, F_{\theta} \mid \theta \in \mathbb{R}\right\}
$$

with $R_{\beta} R_{\alpha}=R_{\beta} F_{\alpha}=F_{\beta+\alpha}, F_{\beta} R_{\alpha}=F_{\beta-\alpha}, F_{\beta} F_{\alpha}=R_{\beta-\alpha}$ and for $n \in \mathbb{Z}^{+}$

$$
D_{n}=\left\{R_{k}, F_{k} \mid k \in \mathbb{Z}_{n}\right\}
$$

where $R_{k}=R_{\theta_{k}}, F_{k}=F_{\theta_{k}}$ with $\theta_{k}=\frac{2 \pi k}{n}$ and we have

$$
\begin{aligned}
R_{l} R_{k} & =R_{k+l}, R_{l} F_{k}=F_{l+k} \\
F_{l} R_{k} & =F_{l-k}, F_{l} F_{k}=R_{l-k}
\end{aligned}
$$

with $k, l \in \mathbb{Z}_{n}$.
Note that $D_{n}=\left\langle R_{1}, F_{0}\right\rangle$.
because $R_{k}=R_{1}^{k}$
and $F_{k}=R_{k} F_{0}=R_{1}^{k} F_{0}$
Often books write R_{1} as σ and F_{0} as τ and $I=R_{0}=e$
So $D_{n}=\langle\sigma, \tau\rangle$ with $\sigma^{n}=e, \tau^{2}=e$

$$
\begin{aligned}
\sigma \tau & =R_{1} F_{0}=F_{1} \\
& =F_{0} R_{n-1} \\
& =\tau \sigma^{n-1}
\end{aligned}
$$

(Since $0-(n-1)=1)$ in \mathbb{Z}_{n}
Remark
If S is a set (with no operation), then the free group on S is the set of expressions

$$
F(S)=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{l}^{k_{l}} \mid l \in \mathbb{N}, a_{i} \in S \text { with } a_{i} \neq a_{i+1}, 0 \neq k_{i} \in \mathbb{Z}\right\}
$$

where the operation is given by concatenation followed by grouping and cancellation.
So the product

$$
\left(a_{1}^{j_{1}} \ldots a_{l}^{j_{l}}\right) *\left(b_{1}^{k_{1}} \ldots b_{m}^{k_{m}}\right)
$$

is given by $\left(a_{1}^{j_{1}} \ldots a_{l-1}^{j_{l-1}} a_{l}^{j_{l}} b_{1}^{k_{1}} b_{2}^{k_{2}} \ldots b_{m}^{k_{m}}\right)$ and the if $a_{l}=b$, we group by replac$\operatorname{ing} a_{l}^{j_{l}} b_{1}^{k_{1}}$ by $a_{l}^{j_{i}+k_{1}}$ and then if $j_{l}+k_{1}=0$ then we cancel the form $a_{l}^{j_{l}+k_{1}}=a_{l}^{0}$ and check to see if $a_{l-1}=b_{2}$.
Example:
In $F(a, b)$,

$$
\begin{aligned}
\left(a^{2} b^{3} a b^{2}\right)\left(b^{-2} a^{-1} b\right) & =a^{2} b^{3} a b^{2} b^{-2} a^{-1} b \\
& =a^{2} b^{3} a b^{0} a^{-1} b \\
& =a^{2} b^{3} a a^{-1} b \\
& =a b^{3} b \\
& =a b^{4}
\end{aligned}
$$

Eg.
$F(\sigma, \tau)=\langle\sigma, \tau\rangle$ and $D_{n}=\langle\sigma, \tau\rangle$
but in $F(\sigma, \tau), \sigma^{n} \neq e, \tau^{2} \neq e$, and $\sigma \tau \neq \tau \sigma^{n-1}$.
Remark

When S is a set, the free abelian group on S is

$$
\begin{aligned}
A(S)=\left\{k_{1} a_{1}+k_{2} a_{2}+\cdots+\right. & k_{l} a_{l} \mid k \in \mathbb{N}, \\
& \text { the } \left.a_{i} \text { are distinct elements in } S, 0 \neq k_{i} \in \mathbb{Z}\right\}
\end{aligned}
$$

If we identify

$$
k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{l} a_{l}
$$

with the function $f: S \rightarrow \mathbb{Z}$ given by $f\left(a_{i}\right)=k_{i}$ and $f(x)=0$ when $x \notin$ $\left\{a_{1}, \ldots, a_{l}\right\}$. Then $A(S)=\mathbb{Z}^{S}=\{f: S \rightarrow \mathbb{Z}\}$ under addition of functions

$$
(f+g)(x)=f(x)+g(x) \text { for all } x \in S
$$

7 September 23th

Definition:

For a group G, the centre of G is the subgroup

$$
Z(G)=\{a \in G \mid a b=b a \text { for all } b \in G\}
$$

For $a \in G$, the centralizer of a in G is the subgroup

$$
C(a)=C_{G}(a)=\{b \in G \mid a b=b a\}
$$

Exercise:

Show that $Z(G)$ and $C(a)$ are subgroups of G.
Chapter 3 The Symmetric Group
Recall that when S is a set, the group of permutations of S, denoted by $\operatorname{Perm}(S)$, is the set of bijective maps $f: S \rightarrow S$ under composition.
For $n \in \mathbb{Z}^{+}$, the $n^{\text {th }}$ symmetric group is the group

$$
S_{n}=\operatorname{Perm}(\{1,2, \ldots, n\})
$$

under composition.

Definition:

For $\alpha \in S_{n}$, we can specify α by giving its table of values as follows.

$$
\alpha=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
\alpha(1) & \alpha(2) & \alpha(3) & \ldots & \alpha(n)
\end{array}\right)
$$

When we can express α in this form, we are using array notation.
Eg.
In array notation,

$$
\begin{aligned}
S_{3}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right),\right. & \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \\
& \left.\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\}
\end{aligned}
$$

If $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$ and $\beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$
Then,

$$
\alpha \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

and

$$
\beta \alpha=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \neq \alpha \beta
$$

Eg. We can think of D_{n} as being a subgroup of S_{n}, because D_{n} permutes the elements in $C_{n}=\left\{\alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ with $\alpha=e^{i 2 \pi / n}$, and we can consider that an element of D_{n} permutes the exponents of the elements α^{k} where $k \in$ $\{1,2, \ldots, n\}$.
If we consider D_{4} as a subgroup of S_{4} in this way.

$$
D_{4}=\left\{I, R_{1}, R_{2}, R_{3}, F_{0}, F_{1}, F_{2}, F_{3}\right\}
$$

with

$$
\begin{aligned}
R_{1} & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) \\
F_{0} & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
\end{aligned}
$$

Definition:

When $a_{1}, a_{2}, \ldots, a_{l}$ are distinct elements in $\{1,2,3, \ldots, \mathrm{n}\}$, we write

$$
\alpha=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{l}\right)
$$

to denote the permutation $\alpha \in S_{n}$ such that
$\alpha\left(a_{1}\right)=a_{2}, \alpha\left(a_{2}\right)=a_{3}, \ldots, \alpha\left(a_{l-1}\right)=a_{l}, \alpha\left(a_{l}\right)=a$.
(So $\alpha\left(a_{j}\right)=a_{j+1}$ with $\left.j \in \mathbb{Z}_{l}\right)$.
and $\alpha(k)=k$ for $k \notin\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}$
A permutation $\alpha \in S_{n}$ of the above form is called an l-cycle.
Notes:

1. $e=(1)=(2)=\cdots=(n)$
2. $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right)=\left(a_{3}, a_{4}, \ldots, a_{n}, a_{1}, a_{2}\right)=\ldots$
3. We can write an l-cycle uniquely in the form $\alpha=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ with $a_{1}=\min \left(a_{1}, a_{2}, \ldots, a_{l}\right)$.
4. If α is an l-cycle, then $|\alpha|=l$.

Definition:

Two cycles $\alpha=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ in S_{n} are called disjoint when $\left\{a_{1}, a_{2}, \ldots, a_{l}\right\} \cap\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}=\emptyset$.
(So no a_{i} is equal to any b_{j}).
More generally, the cycles

$$
\begin{gathered}
\alpha_{1}=\left(a_{1,1}, a_{1,2}, \ldots, a_{1, l_{1}}\right) \\
\alpha_{2}=\left(a_{2,1}, a_{2,2}, \ldots, a_{2, l_{2}}\right) \\
\ldots \\
\alpha_{m}=\left(a_{m, 1}, a_{m, 2}, \ldots, a_{m, l_{m}}\right)
\end{gathered}
$$

are disjoint when no $a_{i, j}$ is equal to and $a_{k, l}$ unless $i=k$ and $j=l$.
Eg.
In S_{8}, we have

$$
(25134)(72651)(31826)=(18624)(375)
$$

Theorem (Cycle Notation)

Every $\alpha \in S_{n}$ can be written as a product of disjoint cycles. Indeed, every $e \neq \alpha \in S_{n}$ can be written uniquely as a product of disjoint cycles in the form

$$
\alpha=\alpha_{1} \alpha_{2} \ldots \alpha_{m}
$$

with

$$
\alpha_{k}=\left(a_{k, 1}, a_{k, 2}, \ldots, a_{k, l_{k}}\right)
$$

where $m \geq 1$, each $l_{k} \geq 2$, for each $k, a_{k, 1}=\min \left\{a_{k i} \mid 1 \leq i \leq l_{k}\right\}$ and $a_{11}<$ $a_{21}<\ldots a_{m 1}$.
Let $e \neq \alpha \in S_{n}$
Proof:
For α to be in the given unique form, we need to choose a_{11} to be the smallest $k \in\{1,2, \ldots, n\}$ such that $\alpha(k) \neq k$. Having chosen a_{11}, we must choose

$$
a_{12}=\alpha\left(a_{11}\right), a_{13}=\alpha\left(a_{12}\right)=\alpha^{2}\left(a_{11}\right), \alpha_{14}=\alpha\left(a_{13}\right)=\alpha^{3}\left(a_{11}\right)
$$

and so on.
Eventually, we must reach a positive integer l such that $\alpha^{l}\left(a_{11}\right)=a_{11}$ and we must choose l to be the smallest such l.
This uniquely determines the first cycle $\alpha_{1}=\left(a_{1,1}, a_{1,2}, \ldots, a_{1, l_{1}}\right)$. If $\alpha=\alpha_{1}$, we are done.
Otherwise, we must choose $a_{2,1}$ to be the smallest $k \in\{1,2, \ldots, n\} \backslash\left\{a_{1,1}, a_{1,2}, \ldots, a_{1, l_{1}}\right\}$ with $\alpha(k) \neq k$.

8 September 25th

Disjoint cycles commute.
We must have

$$
a_{2,2}=\alpha\left(a_{2,1}\right), a_{2,3}=\alpha\left(a_{2,2}\right)=\alpha^{2}\left(a_{2,1}\right) \ldots
$$

and l_{2} must be the smallest positive integer such that $\alpha^{l_{2}}\left(a_{2,1}\right)=a_{2,1}$
Then $\alpha_{2}=\left(a_{2,1}, a_{2,2}, \ldots, a_{2, l_{2}}\right)$
Note that α_{1} and α_{2} are disjoint because if we have

$$
\alpha^{l}\left(a_{1,1}\right)=\alpha^{j}\left(a_{2,1}\right) \text { for some } i, j
$$

Hence,

$$
\begin{aligned}
a_{2,1} & =\alpha^{-j}\left(\alpha^{j}\left(a_{2,1}\right)\right) \\
& =\alpha^{-j}\left(\alpha^{i}\left(a_{1,1}\right)\right) \\
& =\alpha^{i-j}\left(a_{1,1}\right) \in\left\{a_{1,1}, a_{1,2}, \ldots a_{1, l_{1}}\right\}
\end{aligned}
$$

But we chose $a_{2,1} \notin\left\{a_{1,1}, a_{1,2}, \ldots, a_{1, l_{1}}\right\}$
If $\alpha=\alpha_{1} \alpha_{2}$, we are done and otherwise we repeat the above procedure.
Note:
Disjoint cycles commute indeed if $\alpha=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$
are disjoint cycles, then
for $k \in\{1,2, \ldots, n\}$
If $k=a_{i}$, then

$$
\alpha(\beta(k))=\beta(\alpha(k))=a_{i+1}
$$

If $k=b_{j}$, then

$$
\alpha(\beta(k))=\beta(\alpha(k))=b_{j+1}
$$

and if $k \in\left\{a_{1}, \ldots, a_{l}\right\} \cup\left\{b_{1}, \ldots, b_{m}\right\}$
Then, $\alpha(\beta(k))=\beta(\alpha(k))=k$
Note:
If $\alpha=\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ where the α_{k} are disjoint cycles with $\left|\alpha_{k}\right|=l_{k}$, then

$$
\begin{aligned}
|\alpha| & =\operatorname{lcm}\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{m}\right|\right) \\
& =\operatorname{lcm}\left(l_{1}, \ldots, l_{m}\right)
\end{aligned}
$$

Proof:

Let $p \in \mathbb{Z}^{+}$. If p is a common multiple of l_{1}, \ldots, l_{m}, then $\alpha_{k}^{p}=e$ for all k. (when $|a|=l$, we have $a^{k}=e \Longleftrightarrow l \mid k$) So

$$
\begin{aligned}
\alpha^{p} & =\left(\alpha_{1} \alpha_{2} \ldots \alpha_{m}\right)^{p} \\
& =\alpha_{1}^{p} \alpha_{2}^{p} \ldots \alpha_{m}^{p} \quad \text { Since disjoint cycles commute } \\
& =e
\end{aligned}
$$

If p is not a common multiple of l_{1}, \ldots, l_{m}, then we can choose k so that p is not a multiple of l_{k}.
Write $p=q \cdot l_{k}+r$ with $0 \leq r \leq l_{k}$.
Then for $\alpha_{k}=\left(a_{k, 1} a_{k, 2} \ldots a_{k, l_{2}}\right)$
We have $\alpha_{k}^{p}\left(a_{k, 1}\right)=\alpha_{k}^{r}\left(a_{k, 1}\right)=a_{k, 1+r} \neq a_{k, 1}$.
So,

$$
\begin{aligned}
& \alpha^{p}\left(a_{k, 1}\right) \\
= & \left(\alpha_{1} \ldots \alpha_{m}\right)^{p}\left(a_{k, 1}\right) \\
= & \alpha_{k}^{p}\left(\prod_{i \neq k} \alpha_{i}^{p}\right)\left(a_{k, 1}\right) \\
= & \alpha_{k}^{p}\left(a_{k, 1}\right) \\
\neq & a_{k, 1}
\end{aligned}
$$

Hence, $\alpha \neq e$.
Eg. Find the number of elements of each order in S_{6}.
Solution:

Form of α	$\#$ of such α	$\|\alpha\|$
$(a b c d e f)$	$\binom{6}{6} 5!=120$	6
$(a b c d e)$	$\binom{6}{5} 4!=144$	5
$(a b c d)$	$\binom{6}{4} 3!=90$	4
$(a b c d)(e f)$	$\binom{6}{4}\binom{2}{3} 3!1!=90$	4
$(a b c)$	$\binom{6}{3} 2!=40$	3
$(a b c)(d e f)$	$\binom{6}{6} \cdot 5 \cdot 4 \cdot 1 \cdot 2 \cdot 1=40$	3
$(a b c)(d e)$	$\binom{6}{3}\binom{3}{2} 2!=120$	6
$(a b)$	$\binom{6}{2}=15$	2
$(a b)(c d)$	$\binom{6}{4} 1 \cdot 3 \cdot 1 \cdot 1=45$	2
$(a b)(c d)(e f)$	$\binom{6}{6} 1 \cdot 5 \cdot 1 \cdot 3=15$	2
(a)	1	1
Total	720	
$\|\alpha\|$ \# of such α		
6	240	
5	144	
4	180	
3	80	
2	75	
1	1	

9 September 27th

Theorem: (Parity of Permutations)
Let $n \geq 2$ and consider S_{n},

1. Every permutation in S_{n} can be written as a product of 2-cycles.
2. If $e \in S_{n}$ is equal to a product of l 2-cycles, $e=\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \ldots\left(a_{l} b_{l}\right)$ with $a_{i} \neq b_{i}$, then l is even.
3. If $\alpha \in S_{n}$ is a product of $l 2$-cycles and a product of $m 2$-cycles, then $m=l \bmod 2$.

Proof:

1. We already know every $\alpha \in S_{n}$ can be written as a product of (disjoint) cycles, and for $\alpha=\left(a_{1} a_{2} \ldots a_{l}\right)$, note that

$$
\alpha=\left(a_{1} a_{l}\right)\left(a_{1} a_{l-1}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

2. Note that we cannot write e as a 2-cycle. $(e \neq(a, b)$ where $a \neq b)$ and we can write e as a product of 2-cycles $e=(12)(12)$
Let $l \geq 3$. Suppose, inductively, for all $m<l$, if e can be written as a product of m 2-cycles, then m must be even.
Suppose e can be written as a product of $l 2$-cycles,
say $e=\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \ldots\left(a_{l} b_{l}\right)$ where $a_{i} \neq b_{i}$ and let $a=a_{1}$.
Of all the ways in which we can write e as a product of $l 2$-cycles, $e=$ $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \ldots\left(x_{l} y_{l}\right), x_{i} \neq y_{i}$ in which $a=x_{i}$ for some.
Choose one such way

$$
e=\left(r_{1} s_{1}\right)\left(r_{2} s_{2}\right) \ldots\left(r_{l} s_{l}\right)
$$

with $r_{i} \neq s_{i}$,

$$
a=r_{k} \text { for some } k
$$

$r_{i} \neq a$ and $s_{i} \neq a$ for $i<k$ with k chosen to be as large as possible.
Note that we cannot have $k \neq l$ because a product of 2-cycles $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \ldots\left(x_{k} y_{k}\right)$ with $x_{k}=a$ and $x_{i}, y_{i} \neq a$ for $i<k$ is not equal to e since it sends y_{k} to $x_{k}=a \neq y_{k}$.
Note that $\left(r_{k} s_{k}\right)\left(r_{k+1} s_{k+1}\right)$ must be of one of the following forms (after possibly interchanging r_{k+1} and $\left.s_{k+1}\right)$

$$
\begin{array}{ll}
(a b)(a b) & (a b)(a c) \\
(a b)(b c) & (a b)(c d)
\end{array}
$$

where a, b, c, d are distinct elements in $\{1,2, \ldots, n\}$.
But notice that

$$
\begin{gathered}
(a b)(a c)=(a c b)=(b c)(a b) \\
(a b)(b c)=(a b c)=(b c)(a c) \\
(a b)(c d)=(c d)(a b)
\end{gathered}
$$

which would contradict our choice of k.
Thus, $\left(r_{k} s_{k}\right)\left(r_{k+1} s_{k+1}\right)$ is of the form $(a b)(a b)$
After cancelling these two 2-cycles, we can rewrite e as a product of $(l-2)$ 2-cycles.
By the induction hypothesis, $l-2$ is even, so l is even.
3. Let $\alpha \in S_{n}$,

Suppose $\alpha=\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right) \ldots\left(a_{l} b_{l}\right), a_{i} \neq b_{i}$.
and $\alpha=\left(c_{1} d_{1}\right)\left(c_{2} d_{2}\right) \ldots\left(c_{m} d_{m}\right), c_{i} \neq d_{i}$.
Then $e=\alpha \alpha^{-1}=\left(a_{1} b_{1}\right) \ldots\left(a_{l} b_{l}\right)\left(c_{m} d_{m}\right) \ldots\left(c_{2} d_{2}\right)\left(c_{1} d_{1}\right)$
By part $2, l+m$ is even, so $m=l \bmod 2$.

Definition:

For $\alpha \in S_{n}$ with $n \geq 2$, we say that α is even, and we write $(-1)^{\alpha}=1$, when α can be written as a product of an even number of 2 -cycles, and we say that α is odd, and we write $(-1)^{\alpha}=-1$, when α can be written as a product of an odd number of 2 -cycles.
$(-1)^{\alpha}$ is called the parity of α.

Note:

In S_{n} with $n \geq 2$, we have

1. $(-1)^{e}=1$
2. If α is an l-cycle, then $(-1)^{\alpha}=(-1)^{l-1}$.
3. For all $\alpha, \beta \in S_{n},(-1)^{\alpha \beta}=(-1)^{\alpha}(-1) \beta$.
4. For $\alpha \in S_{n},(-1)^{\alpha^{-1}}=(-1)^{\alpha}$

Definition:

The $n^{t h}$ alternating group is the subgroup

$$
A_{n}=\left\{\alpha \in S_{n} \mid(-1)^{\alpha}=1\right\} \leq S_{n}
$$

Eg.
Also, recall that when $n \geq 3$, we can consider D_{n} as a subgroup of S_{n}.
Using cycle notation,

$$
\begin{aligned}
S_{3} & =\left\{(1),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \\
A_{3} & =\left\{(1),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right. \\
D_{3} & =\left\{R_{0}, R_{1}, R_{2}, F_{0}, F_{1}, F_{2}\right\} \\
& =\left\{(1),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& =S_{3}
\end{aligned}
$$

$$
\begin{aligned}
& S_{4}=\{(1),(12),(13),(14),(23),(24),(123),(132),(124), \\
& (142),(134),(143),(234),(243),(1234),(1243) \text {, } \\
& (1324),(1342),(1423),(1432),(12)(34) \text {, } \\
& (13)(24),(14)(23)\} \\
& A_{4}=\left\{(1),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),(124),(142),(134),(143),(234),\right. \\
& (243),(12)(34),(13)(24),(14)(23)\} \\
& D_{4}=\left\{I, R_{1}, R_{2}, R_{3}, F_{0}, F_{1}, F_{2}, F_{3}\right\}
\end{aligned}
$$

with for example, $R_{1}=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right), R_{2}=R_{1}^{2}=(13)(24), F_{0}=(13), F_{1}=$ (14) (2 3) etc.

Example:

$$
\begin{aligned}
S_{n} & =\left\langle(12),(13),\left(\begin{array}{ll}
1 & 4
\end{array}\right), \ldots(1 n)\right. \\
& \left.=\left\langle(12),\left(\begin{array}{ll}
2 & \left.3),\left(\begin{array}{ll}
3 & 4
\end{array}\right), \ldots,(n-1, n)\right\rangle \\
& =\langle(12),(1
\end{array}\right) 3 \ldots n\right)\right\rangle
\end{aligned}
$$

Example:

Show that A_{n} is generated by 3 -cycles. ($a b c$).

$$
A_{n}=\langle(123),(124),(125), \ldots,(12 n)\rangle
$$

10 September 30th

Exercise:
If $a \in G$ and $b \in H$ and $|a|$ and $|b|$ are finite, then in $G \times H$, we have $|(a, b)|=$ $\operatorname{lcm}(|a|,|b|)$

$$
\mathbb{Z}_{9} \times \mathbb{Z}_{15}
$$

Generators for S_{n} and A_{n} :
Since every $\alpha \in S_{n}$ is a product of 2-cycles,

$$
S_{n}=\langle(a b) \mid a, b \in\{1, \ldots, n\}, a<b\rangle
$$

Since when a, b are distinct

$$
(a b)=(1 a)(1 b)(1 a)
$$

It follows that $S_{n}=\langle(12),(13),(14), \ldots,(1 n)\rangle$. Also, note that for $k \neq 1$,

$$
\begin{aligned}
(1 k)=(12)(23)(34) \ldots(k-2 k-1) & (k-1 k) \\
& (k-2 k-1) \ldots(34)(23)(12)
\end{aligned}
$$

and so we also have

$$
S_{n}=\langle(12),(23),(34), \ldots,(n-1, n)\rangle
$$

Also note that

$$
S_{n}=\langle(12),(123 \ldots n)\rangle
$$

because

$$
(k k+1)=(12 \ldots n)^{k-1}(12)(12 \ldots n)^{-(k-1)}
$$

If we think of D_{n} as a subgroup of S_{n},

$$
\begin{aligned}
D_{n} & =\left\langle R_{1}, F_{0}\right\rangle \\
& =\langle(123 \ldots n),(1 n-1)(2 n-2) \ldots(k n-k)
\end{aligned}
$$

where $k=\left\lfloor\frac{n-1}{2}\right\rfloor$
Since every $\alpha \in A_{n}$ is a product of an even number of 2-cycles, A_{n} is generated by all products of pairs of 2-cycles.

$$
A_{n}=\langle(a b)(c d) \mid a, b, c, d \in\{1, \ldots, n\}, a \neq b, c \neq d\rangle
$$

Also, we claim that A_{n} is generated by 3 -cycles,

$$
\left.A_{n}=\langle(a b c)| a, b, c \text { are distinct elements of }\{1,2, \ldots, n\}\right\rangle
$$

Proof:

Every product of a pair of 2-cycles is of one of the forms,

$$
(a b)(a b),(a b)(a c),(a b)(b c),(a b)(c d)
$$

with a, b, c and d distinct, and we have

$$
\begin{aligned}
& (a b)(a b)=e=(a b c)^{3}=(a b c)^{0} \\
& (a b)(a c)=(a c b) \\
& (a b)(b c)=(a b c) \\
& (a b)(c d)=(a d c)(a b c)
\end{aligned}
$$

Exercise:

Show that $A_{n}=\left\langle(123),(124),\binom{1}{2}, \ldots,(12 n)\right\rangle$

Equivalence Classes

Definition:
An equivalence relation on a set S is a binary relation \sim on S such that

1. For all $a \in S, a \sim a$.
2. For all $a, b \in S$, if $a \sim b$, then $b \sim a$.
3. For all $a, b, c \in S$, if $a \sim b$ and $b \sim c$, then $a \sim c$.

When \sim is an equivalence relation on S and $a \in S$, the equivalence class of a is the set $[a]=\{x \in S \mid x \sim a\}$
Note that for $a, b \in S$,

$$
a \sim b \Longleftrightarrow b \in[a] \Longleftrightarrow[a]=[b]
$$

and when $a \nsim b$, (so $[a] \neq[b]$), we have $[a] \cap[b]=\emptyset$.

Sketch Proof:

Suppose $a \sim b$, then $b \sim a$ by (2), so $b \in[a]$.
If $x \in[a]$, then $x \sim a$.
Then since $x \sim a$ and $a \sim b$, we have $x \sim b$ by (3), hence $x \in[b]$.
Thus, $[a] \subseteq[b]$.
If $x \in[b]$, then $x \sim b$.
Since $a \sim b$, we have $b \sim a$ by (2).
Since $x \sim b$ and $b \sim a$, we have $x \sim a$ by (3).
Hence, $x \in[a]$.
Thus, $[b] \subseteq[a]$.
Thus proves part of the 1st statement.
Suppose $a \nsim b$, (so $[a] \neq[b]$).
Suppose, for a contradiction, that $[a] \cap[b] \neq \emptyset$,
Choose $c \in[a] \cap[b]$.
Since $c \in[a]$, we have $[c]=[a]$.
Since $c \in[b]$, we have $[c]=[b]$.
Thus, $[a]=[c]=[b]$, (giving a contradiction).

Example:

When $n \in \mathbb{Z}^{+}$, we can define a relation \sim on \mathbb{Z} by $a \sim b \Longleftrightarrow a=b \bmod n$.
Then, \sim is an equivalence relation,

$$
\mathbb{Z}_{n}=\{[a] \mid a \in \mathbb{Z}\}
$$

Definition:

When \sim is an equivalence relation on a set S, the quotient of S by \sim denoted by S / \sim, is the set of equivalence classes.

$$
S / \sim=\{[a] \mid a \in S\}
$$

Definition:

For a group G and an element $a \in G$, the left multiplication by a is the map $L_{a}: G \rightarrow G$ given by $L_{a}(x)=a x$.
and the right multiplication by a is the map $R_{a}: G \rightarrow G$ given by $R_{a}(x)=x a$. The conjugation by a is the map $C_{a}: G \rightarrow G$ given by $C_{a}(x)=a x a^{-1}$.
Also, for $a, b \in G$, we say that a and b are conjugate in G, and we write $a \sim b$, when $b=C_{g}(a)=g a g^{-1}$ for some $g \in G$.
Note that every conjugacy is an equivalence relation on G.

1. $a \sim a$ since $C_{e}(a)=e a e^{-1}=a$
2. If $a \sim b$, say $b=C_{g}(a)=g a g^{-1}$, then $a=g^{-1} b g=C_{g^{-1}}(b)$ and
3. If $a \sim b$, say $b=g a g^{-1}$, and if $b \sim c$, say $c=h b h^{-1}$, then

$$
\begin{aligned}
c & =h b h^{-1}=h g a g^{-1} h^{-1} \\
& =(h g) a(h g)^{-1} \\
& =C_{h g}(a)
\end{aligned}
$$

So $c \sim a$.
The equivalence class of $a \in G$ under conjugacy is called the conjugacy class of a in G, and it is denoted by $C l(a)$, so

$$
C l(a)=[a]=\left\{x \in G \mid x=g a g^{-1} \text { for some } g \in G\right\}
$$

11 October 2nd

Conjugacy Classes

For $a, b \in G$, we say a is conjugate to b, and write $a \sim b$, when $b=C_{g}(a)=$ $g a g^{-1}$ for some $g \in G$.
This is an equivalence relation, the equivalence class of $a \in G$ is called the conjugacy class and is denoted by $C l(a)$, so

$$
C l(a)=[a]=\left\{x \in G \mid x=g a g^{-1} \text { for some } g \in G\right\}
$$

G is the disjoint union of the conjugacy classes.
Theorem: Conjugacy Classes in S_{n}

For $\alpha, \beta \in S_{n}$, we have $\alpha \sim \beta$ and if and only if when α and β are written in cycle notation, they have the same number of cycles of each length.

Proof:

When α is written in cycle notation as

$$
\alpha=\left(a_{11} a_{12} \ldots a_{1 l_{1}}\right)\left(a_{21} a_{22} \ldots a_{2 l_{2}}\right) \ldots\left(a_{m 1} a_{m 2} \ldots a_{m l_{m}}\right)
$$

For all $\sigma \in S_{n}$, we have

$$
\sigma \alpha \sigma^{-1}=\left(\sigma\left(a_{11}\right), \sigma\left(a_{12}\right), \ldots, \sigma\left(a_{1, l_{1}}\right)\right) \ldots\left(\sigma\left(a_{m 1}\right), \ldots, \sigma\left(a_{m, l_{m}}\right)\right)
$$

(On the right, $\sigma\left(a_{i j}\right)$ is sent to $\sigma\left(a_{i, j+1}\right)$, and on the left, $\sigma\left(a_{i j}\right)$ is sent by σ^{-1} to $a_{i j}$, which is sent by α to $\alpha\left(a_{i j}\right)=a_{i, j+1}$, which is sent by σ to $\left.\sigma\left(a_{i, j+1}\right)\right)$
Eg.
When we listed the possible "types" or "forms" for elements in S_{6} as
$(a b c d e f),(a b c d e),(a b c d)(e f),(a b c d)$,
$(a b c)(d e f),(a b c)(d e),(a b)(c d)(e f),(a b)(c d),(a b),(a)$.
We were actually listing the conjugacy classes in S_{6}.
Chapter 4: Group Homomorphisms
Definition:
Let G and H be groups.
A (group) homomorphism from G to H is a function $\phi=G \rightarrow H$ such that

$$
\phi(a \cdot b)=\phi(a) \cdot \phi(b)
$$

for all $a, b \in G$
A bijective (group) homomorphism $\phi: G \rightarrow H$ is called a (group) isomorphism. We say that G and H are isomorphic, and we write $G \cong H$, when there exists an isomorphism $\phi: G \rightarrow H$.
An endomorphism of G is a homomorphism from G to G and an automorphism of G is an isomorphism from G to G.
We write

$$
\begin{aligned}
\operatorname{Iso}(G, H) & =\{\phi: G \rightarrow H \mid \phi \text { is an isomorphism }\} \\
\operatorname{Hom}(G, H) & =\{\phi: G \rightarrow H \mid \phi \text { is an homomorphism }\} \\
\operatorname{End}(G) & =\{\phi: G \rightarrow G \mid \phi \text { is an endomorphism }\} \\
\operatorname{Aut}(G) & =\{\phi: G \rightarrow G \mid \phi \text { is an automorphism }\}
\end{aligned}
$$

Note:
Let $\phi: G \rightarrow H$ be a homomorphism of groups.

1. $\phi(e)=e$
2. $\phi\left(a^{-1}\right)=\phi(a)^{-1}$
3. $\phi\left(a^{k}\right)=\phi(a)^{k}$ for $k \in \mathbb{Z}$

Proof:

1. $\phi(e)=\phi(e \cdot e)=\phi(e) \cdot \phi(e)$
$\therefore \phi(e)=e$ by cancellation.
2. $\phi(a) \cdot \phi\left(a^{-1}\right)=\phi\left(a \cdot a^{-1}\right)=\phi(e)=e$
$\therefore \phi(a)^{-1}=\phi\left(a^{-1}\right)$ by cancellation.
3. Follows from (b) and from induction.

Question: How is $|a|$ related to $|\phi(a)|$?

Note:

1. $I: G \rightarrow G$ given by $I(x)=x$ is a group homomorphism.
2. If $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ are group homomorphisms, then so is $\psi \circ \phi: G \rightarrow K$
3. If $\phi: G \rightarrow H$ is an isomorphism (an invertible homomorphism), then $\phi^{-1}: H \rightarrow G$.

Proof (3)

Suppose $\phi: G \rightarrow H$ is an isomorphism and let $\psi=\phi^{-1}: H \rightarrow G$. Let $c, d \in H$ Let $a=\psi(c)$ and $b=\psi(d)$ so that $c=\phi(a), d=\phi(b)$.
Then

$$
\begin{aligned}
\psi(c d) & =\psi(\phi(a) \phi(b)) \\
& =\psi(\phi(a \cdot b)) \text { Since } \psi \text { is a homomorphism } \\
& =a \cdot b\left(\text { since } \psi=\phi^{-1}\right) \\
& =\psi(c) \cdot \psi(d)
\end{aligned}
$$

Corollary:

Isomorphism of groups is an equivalence relation (on the class of all groups).
$\{x \mid F(x)$ is true $\}$ is a "class".
If A is a set, then

$$
\{x \in A \mid F(x) \text { is true }\}
$$

is a set.
For all groups G, H, K

1. $G \cong G$.
2. If $G \cong H$, then $H \cong G$.
3. If $G \cong H$ and $H \cong K$, then $G \cong K$.

Note:

Let $\phi: G \rightarrow H$ be a homomorphism of groups. Then

1. If $K \leq G$, then $\phi(K)=\{\phi(a) \mid a \in K\} \leq H$, in particular, $\operatorname{Im}(\phi)=$ Range $(\phi)=\phi(G) \leq H$.
2. If $L \leq H$, then $\phi^{-1}(L)=\{a \in G \mid \phi(a) \in L\} \leq G$, in particular, $\operatorname{Ker}(\phi)=$ $\phi^{-1}(e) \leq G$.

Proof:

Suppose $K \leq G$

12 October 4th

Definition:

Let G and H be groups.
A group homomorphism from G to H is a function $\phi: G \rightarrow H$ such that $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in G$.
A group isomorphism from G to H is a bijective group homomorphism from G to H.
Note:
For a homomorphism $\phi: G \rightarrow H$

1. $\phi(e)=e$
2. $\phi\left(a^{-1}\right)=\phi(a)^{-1}$
3. $\phi\left(a^{k}\right)=\phi(a)^{k}$ for all $k \in \mathbb{Z}$

If $|\phi(a)|=n$ in H, then $\phi\left(a^{n}\right)=\phi(a)^{n}=e$
So $|a|$ is a multiple of $n=|\phi(a)|$
Note:
$I: G \rightarrow G$ is an isomorphism if $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ are homomorphisms, then so is $\psi \circ \phi: G \rightarrow K$.
If $\phi: G \rightarrow H$ is an isomorphism, then $\phi^{-1}: H \rightarrow G$ is too.
Corollary:
Isomorphism is an equivalence relation (on the class of groups)

Definition:

When $\phi: G \rightarrow H$ is a group homomorphism, the image of ϕ is denoted by $\operatorname{Im}(\phi)$, so

$$
\operatorname{Im}(\phi)=\operatorname{Range}(\phi)=\phi(G)=\{\phi(a) \mid a \in G\}
$$

and the kernel of ϕ is the set

$$
\operatorname{Ker}(\phi)=\phi^{-1}(e)=\{a \in G \mid \phi(a)=e\}
$$

Side Note: Relation to Matrix
$A \in M_{n \times m}(\mathbb{R}), A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

$$
\begin{aligned}
\operatorname{Ker}(A) & =\operatorname{Null}(A) \\
& =A^{-1}(0)=\left\{x \in \mathbb{R}^{m} \mid A x=0\right\}
\end{aligned}
$$

$\operatorname{In} G L_{n}(\mathbb{C})$,

$$
A \sim B \Longleftrightarrow B: P A P^{-1}
$$

for some $P \in G L_{n}(\mathbb{C})$.
Note:
Let $\phi: G \rightarrow H$ be a homomorphism.

1. If $K \leq G$, then $\phi(K) \leq H$.

In particular, $\operatorname{Im}(\phi)=\phi(G) \leq H$.
2. If $L \leq H$, then $\phi^{-1}(L) \leq G$.

In particular, $\operatorname{Ker}(\phi) \leq G$.

Proof:

1. Suppose $K \leq G$

Then $\phi(K) \leq H$ because

$$
e_{H}=\phi\left(e_{G}\right) \in \phi(K)
$$

since $e_{G} \in K$
and if $a, b \in K$. So $\phi(a), \phi(b) \in \phi(K)$,
then $\phi(a) \cdot \phi(b)=\phi(a b) \in \phi(K)$ since $a b \in K$
and if $a \in K$, so $\phi(a) \in \phi(K)$, then

$$
\phi(a)^{-1}=\phi\left(a^{-1}\right) \in \phi(K)
$$

since $a^{-1} \in K$.
2. Exercise.

Examples of Homomorphisms

The map $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$given by $\phi(t)=e^{t}$ is a homomorphism, because for $s, t \in \mathbb{R}$

$$
\begin{aligned}
\phi(s+t) & =e^{s+t}=e^{s} \cdot e^{t} \\
& =\phi(s) \cdot \phi(t)
\end{aligned}
$$

We have $\operatorname{Ker} \phi=\phi^{-1}(1)=\{0\}$
The map

$$
\phi: \mathbb{R} \rightarrow \mathbb{S}^{1}=\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}
$$

given by $\phi(t)=e^{i 2 \pi t}$
is a homomorphism because for $s, t \in \mathbb{R}$,

$$
\begin{aligned}
\phi(s+t) & =e^{i 2 \pi(s+t)} \\
& =e^{i 2 \pi s} \cdot e^{i 2 \pi t} \\
& =\phi(s) \cdot \phi(t)
\end{aligned}
$$

We have $\operatorname{Ker}(\phi)=\phi^{-1}(1)=\mathbb{Z}$
The $\operatorname{map} \phi: G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ given by $\phi(A)=\operatorname{det}(A)$
Missing parts ...
Examples:
Let G be any group, describe $\operatorname{Hom}(\mathbb{Z}, G)$
Solution:
Let $a \in G$, define $\phi_{a}: \mathbb{Z} \rightarrow G$ given by $\phi_{a}(K)=a^{k}$.
Then ϕ_{a} is a homomrophism, because

$$
\begin{aligned}
\phi_{a}(k+l) & =a^{k+l}=a^{k} \cdot a^{l} \\
& =\phi_{a}(k) \cdot \phi_{a}(l)
\end{aligned}
$$

Note:

Every homomorphism $\phi: \mathbb{Z} \rightarrow G$ is equal to one of the homomorphisms $\phi_{a}, a \in$ G.
Indeed, given a homomorphism $\phi: \mathbb{Z} \rightarrow G$, let $a=\phi(1)$ and then for all $k \in \mathbb{Z}$

$$
\phi(k)=\phi(k \cdot 1)=\phi(1)^{k}=a^{k}=\phi_{a}(k)
$$

So we have $\phi=\phi_{a}$
Thus, $\operatorname{Hom}(\mathbb{Z}, G)=\left\{\phi_{a} \mid a \in G\right\}$
Exercise:
Let G be any group, describe $\operatorname{Hom}\left(\mathbb{Z}_{n}, G\right)$

13 October 7th

Note:

For a group homomorphism, $\phi: G \rightarrow H$, note that

$$
\phi \text { is injective } \Longleftrightarrow \operatorname{Ker}(\phi)=\{e\}
$$

Proof:
If ϕ is injective, then since $\phi(e)=e$. It follows that

$$
\phi(a)=e_{H} \Longleftrightarrow a=e_{G}
$$

So

$$
\begin{aligned}
\operatorname{Ker}(\phi) & =\phi^{-1}\left(e_{H}\right) \\
& =\left\{a \in G \mid \phi(a)=e_{H}\right\} \\
& =\left\{e_{G}\right\}
\end{aligned}
$$

Suppose $\operatorname{Ker}(\phi)=\{e\}$.
Let $a, b \in G$ and suppose $\phi(a)=\phi(b)$.
Then

$$
\begin{aligned}
\phi\left(a b^{-1}\right) & =\phi(a) \phi(b)^{-1}=\phi(a) \phi(a)^{-1} \\
& =e_{H}
\end{aligned}
$$

So $a b^{-1} \in \operatorname{Ker}(\phi)=\left\{e_{G}\right\}$
Hence $a b^{-1}=e$
$\therefore a=b$
Examples of Isomorphisms
Examples:

1. The $\operatorname{map} \phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$given by $\phi(x)=e^{x}$ is a group isomorphism with inverse $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ given by $\psi(y)=\log (y)=\ln (y)$.
2. The $\operatorname{map} \phi: S O_{2}(\mathbb{R}) \rightarrow \mathbb{S}^{1}$ given by $\phi\left(R_{\theta}\right)=e^{i \theta}$ is a group isomorphism.
3. Show that $U_{12} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Solution:

In U_{12} we have the operation table.

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

and in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we have the operation table

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

From the table, we see that the map $\phi: U_{12} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ given by $\phi(1)=$ $(0,0), \phi(5)=(1,0), \phi(7)=(0,1)$ and $\phi(11)=(1,1)$ is an isomorphism.

Examples:

If $a \in G$ with $|a|=\infty$, then $\langle a\rangle \cong \mathbb{Z}$.
Indeed, the $\operatorname{map} \phi:\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\} \rightarrow \mathbb{Z}$ given by $\phi\left(a^{k}\right)=k$ is an isomorphism with inverse $\psi: \mathbb{Z} \rightarrow\langle a\rangle$ given by $\psi(k)=a^{k}$. (ψ is a homomorphism because $\psi(k+l)=a^{k+l}=a^{k} \cdot a^{l}=\psi(k) \cdot \psi(l)$ and ψ is bijective by the Elements in Cyclic Groups Theorem.)

Examples:

If $a \in G$ with $|a|=n \in \mathbb{Z}^{+}$, then $\langle a\rangle \cong \mathbb{Z}_{n}$
Indeed, the map $\psi: \mathbb{Z}_{n} \rightarrow\langle a\rangle$ given by $\psi(k)=a^{k}$ is a group isomorphism. (by the Elements in Cyclic Groups Theorem)
Theorem:
When $k, l \in \mathbb{Z}^{+}$with $\operatorname{gcd}(k, l)=1$, we have $\mathbb{Z}_{k l} \cong \mathbb{Z}_{k} \times \mathbb{Z}_{l}$ and $U_{k l} \cong U_{k} \times U_{l}$. Indeed, the $\operatorname{map} \phi: \mathbb{Z}_{k l} \rightarrow \mathbb{Z}_{k} \times \mathbb{Z}_{l}$ and the map $\phi: U_{k l} \rightarrow U_{k} \times U_{l}$ given by $\phi(a)=(a, a)$, that is

$$
\phi(a \bmod k l)=(a \bmod k, a \bmod l)
$$

are group isomorphisms.

Proof:

Let us show that $\phi: U_{k l} \rightarrow U_{k} \times U_{l}$ is an isomorphism.
Note that ϕ is well-defined because, for $a \in \mathbb{Z}$, if $a \in U_{k l}$, so $\operatorname{gcd}(a, k l)=1$
then $\operatorname{gcd}(a, k)=1$ and $\operatorname{gcd}(a, l)=1$.
So $a \in U_{k}$ and $a \in U_{l}$
Hence $\phi(a)=(a, a) \in U_{k} \times U_{l}$
Also note that ϕ is group homomorphism because, for $a, b \in \mathbb{Z}$

$$
\begin{aligned}
\phi(a \cdot b) & =(a \cdot b, a \cdot b) \in U_{k} \times U_{l} \\
& =(a, a) \cdot(b, b) \in U_{k} \times U_{l}
\end{aligned}
$$

Finally note that ϕ is bijective by the Chinese Remainder Theorem:
Given a with $\operatorname{gcd}(a, k)=1$, so $a \in U_{k}$ and b with $\operatorname{gcd}(b, l)=1$, so $b \in U_{l}$
We can solve the pair of congruences

$$
\begin{gathered}
x=a \bmod k \\
x=b \bmod l
\end{gathered}
$$

by the CRT.
and then
Since $x=a \bmod k$, we have $\operatorname{gcd}(x, k)=\operatorname{gcd}(a, k)=1$.
And since $x=b \bmod l$, we have $\operatorname{gcd}(x, l)=\operatorname{gcd}(b, l)=1$.
And since $\operatorname{gcd}(x, k)=1$ and $\operatorname{gcd}(x, l)=1$, we have $\operatorname{gcd}(x, k l)=1$, so $x \in U_{k l}$. and since $x=a \bmod k$ and $x=b \bmod l$
We have

$$
\phi(x)=(a, b) \in U_{k} \times U_{l}
$$

This shows that ϕ is surjective.
The CRT also implies that ϕ is injective because the solution to the pair of congruences

$$
\begin{gathered}
x=a \bmod k \\
x=b \bmod l
\end{gathered}
$$

is unique modulo, $\operatorname{lcm}(k, l)=k l,($ since $\operatorname{gcd}(k, l)=1)$
Corollary:

1. When $k, l \in \mathbb{Z}^{+}$with $\operatorname{gcd}(k, l)=1$, we have $\phi(k l)=\phi(k) \phi(l)$. Since $\phi(k l)=\left|U_{k l}\right|=\left|U_{k} \times U_{l}\right|=\left|U_{k}\right| \cdot\left|U_{l}\right|=\phi(k) \cdot \phi(l)$
2. When $n=\prod_{i=1}^{l} p_{i}^{k_{i}}$, where the p_{i} are distinct primes,

$$
\phi(n)=\prod_{i=1}^{l} \phi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{l}\left(p_{i}^{k_{i}}-p_{i}^{k_{i}-1}\right)
$$

Example:

$$
\begin{aligned}
\left|U_{3000}\right| & =\phi(3000) \\
& =\phi\left(2^{3} \cdot 3^{1} \cdot 5^{3}\right) \\
& =\left(2^{3}-2^{2}\right)\left(3^{1}-3^{0}\right)\left(5^{3}-5^{2}\right) \\
& =4 \cdot 2 \cdot 100=800
\end{aligned}
$$

Theorem: (Properties Shared by Isomorphic Groups)
Let $\phi: G \rightarrow H$ be a group isomorphism. Then

1. $|G|=|H|$
2. G is abelian $\Longleftrightarrow H$ is abelian.
3. For $a \in G$, we have $|a|=|\phi(a)|$
4. G is cyclic $\Longleftrightarrow H$ is cyclic.
5. G and H have the same number of elements of each order For $n \in \mathbb{Z}^{+} \cup\{\infty\}$, we have

$$
|\{a \in G||a|=n\}|=|\{b \in H| | b \mid=n\}|
$$

6. For $a, b \in G$, we have

$$
a \sim b \Longleftrightarrow \phi(a) \sim \phi(b)
$$

7. G and H have the same number of conjugacy classes (and the same number of classes of each size)
8. For $K \leq G$, the restriction $\phi: K \rightarrow \phi(K)$ is an isomorphism.
9. G and H have the same number of subgroups (and the same number of n-element subgroups, and the same number of subgroups isomorphic to a particular group L).

14 October 9th

Sample Proof:

Let $\phi: G \rightarrow H$ be a group homomorphism, and let $a \in G$.
Let us show that $|a|=|\phi(a)|$
For $n \in \mathbb{Z}^{+}$,

$$
\begin{aligned}
a^{n}=e & \Longleftrightarrow \phi\left(a^{n}\right)=\phi(e) \text { Since } \phi \text { is injective. } \\
& \Longleftrightarrow \phi(a)^{n}=e \text { Since } \phi\left(a^{n}\right)=\phi(a)^{n}, \text { and } \phi(e)=e
\end{aligned}
$$

Example:

1. $U_{35} \not \not 二 U_{42}$

Since $\left|U_{35}\right|=\phi(35)=24,\left|U_{42}\right|=\phi(42)=12$.
2. $S_{5} \not \neq G L_{3}\left(\mathbb{Z}_{2}\right)$

Since $\left|S_{5}\right|=5!=5 \cdot 4 \cdot 3 \cdot 2$
and $\left|G L_{3}\left(\mathbb{Z}_{2}\right)\right|=\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=7 \cdot 6 \cdot 4$
3. $\mathbb{R}^{*} \nsubseteq \mathbb{C}^{*}$

Since \mathbb{R}^{*} has no elements of order 3 , but in $\mathbb{C}^{*}, \alpha=e^{i 2 \pi / 3}$ and also $\alpha^{2}=e^{i 4 \pi / 3}$ have order 3 .

Inner Automorphisms

Recall that for a group $G, \operatorname{Aut}(G)$ is the set of isomorphisms $\phi: G \rightarrow G$. Note that $\operatorname{Aut}(G)$ is a group under composition.
Note that for $a \in G$, the conjugation map $C_{a}: G \rightarrow G$ given by $C_{a}(x)=a x a^{-1}$ is a group automorphism indeed.

$$
\begin{aligned}
C_{a}(x y) & =a x y a^{-1} \\
& =a x a^{-1} a y a^{-1} \\
& =C_{a}(x) C_{a}(y)
\end{aligned}
$$

and for $a, b \in G$,

$$
\begin{aligned}
C_{a}\left(C_{b}(x)\right) & =C_{a}\left(b x b^{-1}\right)=a b x b^{-1} a^{-1} \\
& =(a b) x(a b)^{-1}=C_{a b}(x)
\end{aligned}
$$

So that in particular,

$$
\left(C_{a}\right)^{-1}=C_{a^{-1}}
$$

An automorphism of G of the $C_{a}: G \rightarrow G$ for some $a \in G$ is called an inner automorphism and we denote the set of inner automorphisms by $\operatorname{Inn}(G)$

$$
\operatorname{Inn}(G)=\left\{C_{a}: G \rightarrow G \mid a \in G\right\}
$$

Note that the above calculations show that

$$
\operatorname{Inn}(G) \leq \operatorname{Aut}(G)
$$

Exercise:

1. Show that $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong U_{n}$
2. Find \mid Aut $D_{6} \mid$ and $\left|\operatorname{Inn} D_{6}\right|$

Theorem: (Cayley's Theorem)

1. If G is any set with n elements, then $\operatorname{Perm}(G) \cong S_{n}$.

Indeed, if $f: G \rightarrow\{1,2, \ldots, n\}$ is any bijection, then the map ϕ : $\operatorname{Perm}(G) \rightarrow S_{n}$ given by $\phi(\sigma)(k)=f\left(\sigma\left(f^{-1}(k)\right)\right)$ for $k \in\{1,2, \ldots, n\}$.
That is, $\phi(\sigma)=f \sigma f^{-1}$.
2. If G is any group, then G is isomorphic to a subgroup of $\operatorname{Perm}(G)$. Indeed, the map $\psi: G \rightarrow \operatorname{Perm}(G)$ given by $\psi(a)=L_{a}$ (where $L_{a}: G \rightarrow G$ is given by $L_{a}(x)=a x$) is an injective group homomorphism. (So $\psi: G \rightarrow \psi(G)$ is an isomorphism)
3. If G is a finite group with $|G|=n$, then G is isomorphic to a subgroup of S_{n}.

Sketch Proof:

1. Verify that if $\sigma \in \operatorname{Perm}(G)$, then $\phi(\sigma)=f \sigma f^{-1} \in S_{n}$.
$\left(\right.$ So $\left.\phi(\sigma)=f \sigma f^{-1} \in \operatorname{Perm}\{1,2, \ldots, n\}\right)$
Also, verify that ϕ is a homomorphism.
$\left(\right.$ Proof: $\left.\phi(\sigma \tau)=f \sigma \tau f^{-1}=f \sigma f^{-1} f \tau f^{-1}=\phi(\sigma) \phi(\tau)\right)$
Also, verify that ϕ is bijective.
2. Let $\psi: G \rightarrow \operatorname{Perm}(G)$ be given by $\psi(a)=L_{a}$.

Verify that ψ is well-defined. $\left(\left(L_{a}\right)^{-1}=L_{a^{-1}}\right)$
Verify that ψ is a group homomorphism. $\left(\psi(a b)=L_{a b}=L_{a} L_{b}=\right.$ $\phi(a) \phi(b))$
Verify that ϕ is injective.
(For $a, b \in G$, if $\phi(a)=\phi(b)$, so $L_{a}=L_{b}$ (as functions), then $L_{a}(x)=$ $L_{b}(x)$ for all $x \in G$. So $a=L_{a}(e)=L_{b}(e)=b$)
3. Compose ψ and ϕ from parts (1) and (2).

Example:

U_{12}

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

If we use the bijection $f: U_{12} \rightarrow\{1,2,3,4\}$ given by $f(1)=1, f(5)=2, f(7)=$ $3, f(11)=4$.
Then U_{12} is isomorphic to the subgroup $\{(1),(12)(34),(13)(24),(14)(23)\}=$ $A_{4} \leq S_{4}$

15 October 11th

Chapter 5: Cosets, Quotient Groups

Definition:

Let G be a group and let $H \leq G$.
For $a \in G$, the left coset of H in G containing a is the set

$$
\begin{aligned}
a H & =\{a h \mid h \in H\} \\
& =L_{a}(H)
\end{aligned}
$$

and the right coset of H in G containing a is the set

$$
\begin{aligned}
H a & =\{h a \mid h \in H\} \\
& =R_{a}(H)
\end{aligned}
$$

When G is abelian, there is no difference between left and right cosets, so we just call them cosets.
When G is an additive abelian group, we write $a H$ (and $H a$) as $a+H$ and then

$$
a+H=\{a+h \mid h \in H\}
$$

Exercise:

Think about cosets of $\langle n\rangle=n \mathbb{Z}=\{\ldots,-n, 0, n, 2 n, \ldots\}$ in \mathbb{Z}.
Theorem:
Let G be a group and let $H \leq G$,

1. For $a, b \in G, a H=b H \Longleftrightarrow a \in b H \Longleftrightarrow b^{-1} a \in H$
2. For $a, b \in G$, either $a H=b H$ or $a H \cap b H=\emptyset$
3. For all $a \in G,|a H|=|H|$

Proof:

1. Let $a, b \in G$.

- If $a H=b H$, then $a \in b H$ because $a=a e \in a H$.
- If $a \in b H$, say $a=b h$ where $h \in H$, then $b^{-1} a=h \in H$.

Suppose that $b^{-1} a \in H$, say $b^{-1} a=h \in H$.
If $x \in a H$, say $x=a k$ with $k \in H$, then $x=a k=(b h) k=b(h k) \in b H$ (since $h k \in H$).
If $y \in b H$, say $y=b l$ with $l \in H$, then $y=b l=\left(a h^{-1}\right) l=a\left(h^{-1} l\right) \in a H$
2. Part(2) holds because we can (obviously) define an equivalence relation \sim on G by define

$$
\begin{aligned}
a \sim b & \Longleftrightarrow a H=b H \\
& \left.\Longleftrightarrow a \in b H \Longleftrightarrow b^{-1} a \in H\right)
\end{aligned}
$$

and then, for $a \in G$, the equivalence class of a is

$$
\begin{aligned}
{[a] } & =\{b \in G \mid b \sim a\} \\
& =\{b \in G \mid b \in a H\} \\
& =a H
\end{aligned}
$$

3. Note that for $a \in H$, we have $|a H|=|H|$ because the map $L_{a}: H \rightarrow a H$ is bijective with inverse $L_{a^{-1}}: a H \rightarrow H$.

Notation:

When $H \leq G$ and, for $a, b \in G$, we define

$$
a \sim b \Longleftrightarrow a H=b H
$$

the quotient G / \sim is also written as G / H so

$$
G / H=\{a H \mid a \in G\}
$$

Theorem: (Lagrange's Theroem)
Let G be a group and let $H \leq G$.
Then $|G / H| \cdot|H|=|G|$
Proof:
This holds because G is the disjoint cosets and the cosets all have size $|H|$.
Corollary:
Let G be a finite group.

1. If $H \leq G$, then $|H|||G|$.
2. If $a \in G$, then $|a|||G|$.

Corollary: (Euler-Fermat Theorem)

Corollary:

If $a \in U_{n}$, then $a^{\phi(n)}=1$.
Corollary: (The Classification of Groups of Order p)
Let p be a prime number and let G be a group with $|G|=p$. Then $G \cong \mathbb{Z}_{p}$. Proof:
For any $a \in G$, we have $|a|||G|$. So $| a|\mid p$, so $| a \mid=1$ or p.
The only element of order 1 is e. So all the other elements have order p (and generate G).
Side Note:
For $a, b \in \mathbb{Z}$,

$$
\begin{aligned}
a \sim b & \Longleftrightarrow a-b \in n \mathbb{Z} \\
& \Longleftrightarrow a=b \bmod n
\end{aligned}
$$

So $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$.
Theorem:
Let $H \leq G$. Then the following are equivalent.

1. We can define a binary operation on G / H by $(a H)(b H)=(a b) H$
2. For all $a \in G$ and $h \in H$, we have $a h a^{-1} \in H$.
3. For all $a \in G$, we have $a H=H a$.
4. For all $a \in G, a H a^{-1}=H$, where $a H a^{-1}=\left\{a h a^{-1} \mid h \in H=C_{a}(H)\right\}$

Proof:

Note that (1) means that for all $a, b, c, d \in G$, if $a H=c H$ and $b H=d H$, then (ab) $H=(c d) H$. Equivalently, it means that for all $a, b, c, d \in G$, if $c^{-1} a \in H$ and $d^{-1} b \in H$, then $d^{-1} c^{-1} a b=u h u^{-1} \in H$.
Suppose (1) holds (in the above form)
Let $u \in G$ and $h \in H$. Choose $b=d=u^{-1}$, and $a=h$ and $c=e$.
Then, $c^{-1} a=h \in H$ and $d^{-1} b=u \cdot u^{-1}=e \in H$.
So $d^{-1} b^{-1} a b \in H$, that is $u h u^{-1} \in H$.
Suppose, conversely, that (2) holds, (so we have $u h u^{-1} \in H$ for all $u \in G$ and $h \in H)$
Let $a, b, c, d \in G$ with $c^{-1} a \in H$ and $d^{-1} b \in H$, say $c^{-1} a=k \in H$, and $d^{-1} b=l \in H$.
Then $d^{-1} c^{-1} a b=d^{-1} k b=d^{-1} k d l \in H$,
since $d^{-1} k d \in H$ (by (2) using $u=d^{-1}, h=k$)
and $l \in H$.
Let us show that $(2) \Longleftrightarrow$ (3).
Suppose (2) holds, $\left(a h a^{-1} \in H\right.$ for all $\left.a \in G, h \in H\right)$.
If $x \in a H$, say $x=a h$ with $h \in H$. Then $x=a h=a h a^{-1} a \in H a$, since $a h a^{-1} \in H$.
If $y \in H a$, say $y=h a$ with $h \in H$, then $y=h a=a a^{-1} h a \in a H$, since $a^{-1} h a \in H$.
This proves that $(2) \Rightarrow(3)$.

16 October 21st

Normal Subgroups

For $H \leq G, a \in G, a H=\{a h \mid h \in H\}$.

$$
\begin{aligned}
a \sim b & \Longleftrightarrow b \in a H \Longleftrightarrow a^{-1} b \in H \\
& \Longleftrightarrow a \in b H \\
& \Longleftrightarrow a H=b H
\end{aligned}
$$

Side Notes:
$|a H|=|H|$.
For $H \leq G, a \in G,|H|| | G|,|a|||G|$.
Theorem:
Let $H \leq G$. The following are equivalent.

1. We can define a well-defined binary operation on G / H by $(a H)(b H)=$ $(a b) H$ for all $a, b \in G$.
2. For all $a \in G, h \in H: a h a^{-1} \in H$.
3. For all $a \in G, a H=H a$.
4. For all $a \in G, C_{a}(H)=a H a^{-1}=H$.

Proof:

Proof $1 \Longleftrightarrow 2$; Done.
Proof $2 \Longleftrightarrow 3$; Done.
Proof $3 \Longleftrightarrow 2$;
Suppose that 3 holds. Let $a \in G$ and $h \in H$, by (3), we have $a H=H a$.
So in particular, $a h \in H a$, say $a h=k a$ where $k \in H$.
Then $a h a^{-1}=k \in H$.
The equivalence of part 4 is left as an exercise.

Remark:

For $a \in G$, the map $C_{a}: G \rightarrow G$ given by $C_{a}(x)=a x a^{-1}$ is an automorphism of G.
So $C_{a}: H \rightarrow C_{a}(H)=a H a^{-1}$.
Hence, $a H a^{-1} \leq G$ with $a H a^{-1} \cong H$.
The groups H and $a H a^{-1}$ are called conjugate subgroups of G.

Definition:

When a subgroup $H \leq G$ satisfies the equivalent conditions of the above theorem, we say that H is a normal subgroup of G, and we write $H \unlhd G$.
In this case, the (well-defined) operation on G / H given by $(a H)(b H)=(a b) H$ makes G / H into a group, which we call the quotient group of G by H.
The identity element in G / H is $e H=H$.
The inverse of $a H$ is $a^{-1} H$.

Remark:

When G is an abelian group, every subgroup $H \leq G$ is a normal subgroup.
Exmaples:
In \mathbb{Z}, for $n \in \mathbb{Z}^{+}$,

$$
\langle n\rangle=n \mathbb{Z}=\{\ldots,-n, 0, n, 2 n \ldots\}
$$

and $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$.
Theorem (The First Isomorphism Theorem)

1. Let $\phi: G \rightarrow H$ be a group homomorphism and let $K=\operatorname{Ker} \phi \leq G$. Then $K \unlhd G$ and $G / K \cong \phi(G)$.
Indeed, the $\operatorname{map} \Phi: G / K \rightarrow \phi(G)$ given by $\Phi(a K)=\phi(a)$ is a well-defined group homomorphism.
2. Let $K \unlhd G$. Then the map $\phi: G \rightarrow G / K$ given by $\phi(a)=a K$ is a group homomrophism with $\operatorname{Ker} \phi=K$.

Proof:

1. Note that $K \unlhd G$ where $K=\operatorname{Ker} \phi$ because if $a \in G$ and $k \in K$, so $\phi(k)=e$, then $a k a^{-1} \in K$ since

$$
\begin{aligned}
\phi\left(a k a^{-1}\right) & =\phi(a) \phi(k) \phi(a)^{-1} \\
& =\phi(a) \cdot e \cdot \phi(a)^{-1} \\
& =\phi(a) \phi(a)^{-1}=e
\end{aligned}
$$

(We used part (2) of the definition of normal.)
Note that $\Phi: G / K \rightarrow \phi(G)$ given by $\Phi(a K)=\phi(a)$ for $a \in G$ is welldefined because for $a, b \in G$ with $a K=b K$, we have $a^{-1} b \in K$, say $a^{-1} b=k \in K=\operatorname{Ker} \phi$.
So $\phi\left(a^{-1} b\right)=e$, hence $\phi(a)^{-1} \phi(b)=e$.
Hence $\phi(b)=\phi(a)$.
Note that Φ is a group homomorphism because, for $a, b \in G$

$$
\begin{aligned}
\Phi((a K)(b K)) & =\Phi((a b) K) \\
& =\phi(a b)=\phi(a) \phi(b) \\
& =\Phi(a K) \Phi(b K)
\end{aligned}
$$

Side note: $\phi: G \rightarrow H, K=\operatorname{Ker} \phi, \Phi(a K)=\phi(a), \Phi: G / K \rightarrow \phi(G)$.
Note that Φ is surjective because given $b \in \phi(G)$, say $b=\phi(a)$ with $a \in G$, then $\Phi(a H)=\phi(a)=b$.
Note that Φ is injective because for $a \in G$,

$$
\Phi(a K)=e \Longrightarrow \phi(a)=e \Longrightarrow a \in K \Longrightarrow a K=e K=K
$$

(So that $a K$ is the identity element in G / K).

17 October 23rd

$H \unlhd G$ when $a h a^{-1} \in H$ for all $a \in G, h \in H$ or when $a H=H a$ for all $a \in G$. Then G / H is a group under $(a H)(b H)=(a b) H$ for $a, b \in G$.
Theorem: (The First Isomorphism Theorem)

1. If $\phi: G \rightarrow H$ is a group homomorphism, and $K=\operatorname{Ker} \phi$, then $K \unlhd G$ and $G / K \cong$ Image $(\phi)=\phi(G)$.
Indeed, the map $\Phi: G / K \rightarrow \phi(G)$ given by $\Phi(a K)=\phi(a)$ is an isomorphism.

Examples:

The $\operatorname{map} \phi: G \rightarrow H$ given by $\phi(a)=e$ is a homomorphism. We have $\operatorname{Ker} \phi=G$ and $\operatorname{Im} \phi=\{e\}$ and $G / G \cong\{e\}$.
The map $\phi: G \rightarrow G$ given by $\phi(a)=a$ for all $a \in G$, is a homomorphism.
We have Ker $\phi=\{e\}$ and $\operatorname{Im} \phi=G$ and $G /\{e\} \cong G$.
For $n \in \mathbb{Z}^{+}$, the $\operatorname{map} \phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ given by $\phi(k)=k$ is a homomorphism, $\operatorname{Ker} \phi=n \mathbb{Z}=\langle n\rangle=\{\ldots,-n, 0, n, 2 n, \ldots\}$
$\operatorname{Im} \phi=\mathbb{Z}_{n}$
$\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$
(Indeed, $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$).
The $\operatorname{map} \phi: \mathbb{R} \rightarrow \mathbb{S}^{1}$ given by $\phi(t)=e^{i 2 \pi t}$ is a homomrophism with $\operatorname{Ker} \phi=\mathbb{Z}$ and $\operatorname{Im} \phi=\mathbb{S}^{1}$. So $\mathbb{R} / \mathbb{Z} \cong \mathbb{S}^{1}$.
The map $\phi: \mathbb{C}^{*} \rightarrow \mathbb{R}$ given by $\phi(z)=|z|$ is a homomorphism (since $|z w|=$ $|z||w|)$ with $\operatorname{Ker} \phi=\mathbb{S}^{1}$ and $\operatorname{Im} \phi=\mathbb{R}^{+}$.
So $\mathbb{C}^{*} / \mathbb{S}^{1} \cong \mathbb{R}^{+}$
The map $\phi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ given by $\phi(z)=\frac{z}{|z|}$ is a homomorphism, (since $\frac{z w}{|z w|}=$ $\left.\frac{z}{|z|} \cdot \frac{w}{|w|}\right)$ with $\operatorname{Ker} \phi=\mathbb{R}^{+}$and $\operatorname{Im} \phi=\mathbb{S}^{1}$.
So $\mathbb{C}^{*} / \mathbb{R}^{+}=\mathbb{S}^{1}$.
Note also that

$$
\mathbb{C}^{*} \cong \mathbb{R}^{+} \times \mathbb{S}^{1}
$$

with an isomorphism

$$
\phi: \mathbb{R}^{+} \times \mathbb{S}^{1} \rightarrow \mathbb{C}^{*}
$$

given by $\phi\left(r, e^{i \theta}\right)=r e^{i \theta}$
When R is a commutative ring with 1 , the map

$$
\phi: G L_{n}(R) \rightarrow R^{*}
$$

given by $\phi(A)=\operatorname{det}(A)$ is a group homomorphism with $\operatorname{Ker} \phi=S L_{n}(R)$ and
$\operatorname{Im} \phi=\mathbb{R}^{*}$. (Since $a \in \mathbb{R}^{*}$, $\left.\operatorname{det}\left(\begin{array}{llll}a & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right)=a\right)$
So $S L_{n}(R) \unlhd G L_{n}(R)$ and $G L_{n}(R) / S L_{n}(R) \cong \mathbb{R}^{*}$.
Let G be any group. Then the map $\phi: G \rightarrow \operatorname{Aut}(\mathrm{G})$ given by $\phi(a)=C_{a}$ where $C_{a}: G \rightarrow G$ is given by $C_{a}(x)=a x a^{-1}$ for $x \in G$, is a group homomorphism with

$$
\begin{aligned}
\text { Ker } \phi & =\left\{a \in G \mid C_{a}=I\right\} \\
& =\left\{a \in G \mid C_{a}(x)=x \text { for all } x \in G\right\} \\
& =\left\{a \in G \mid a x a^{-1}=x \text { for all } x \in G\right\} \\
& =\{a \in G \mid a x=x a \text { for all } x \in G\} \\
& =Z(G) \quad(\text { The centre of } G)
\end{aligned}
$$

and $\operatorname{Im} \phi=\left\{C_{a} \mid a \in G\right\}=\operatorname{Inn}(G)$
So $Z(G) \unlhd G$ and $G / Z(G) \cong \operatorname{Inn}(G)$.
Example:
Let $H=\operatorname{Span}_{\mathbb{Z}}\{(2,6),(6,3)\} \leq \mathbb{Z}^{2}$.
Show that $\mathbb{Z}^{2} / H \cong \mathbb{Z}_{30}$ and find a homomorphism $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}_{30}$ with $\operatorname{Ker} \phi=$ H.

Sketch Solution:

A graph here, see pictures.
$(0,0)+H=H$
$(1,0)+H$
$(10,0)+H=H$ since $(10,0) \in H$.
In G / H, the order of $(1,0)+H=10$.
Verify that G / H is generated by $(1,1)+H$.

$$
\operatorname{det}\left(\begin{array}{ll}
2 & 6 \\
6 & 3
\end{array}\right)=|-30|=30
$$

So G / H is cyclic of order 30 .
$\therefore G / H \cong \mathbb{Z}_{30}$.
Define $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}_{30}$ by $\phi(k(1,1)+H)=k$, or equivalently by $\phi((k, l)+H)=$ $9 k-8 l$.
Verify that for ϕ as above, we do have $\operatorname{Ker} \phi=H$
Side Note:
To get $\phi(k(1,1)+H)=k$, we need $\phi((1,0)+H)=9$ and $\phi((0,1)+H)=22=-8$. If $(k, l) \in H$, say

$$
\begin{aligned}
(k, l) & =s(2,6)+t(6,3) \\
& =(2 s+6 t, 6 s+3 t)
\end{aligned}
$$

for some $s, t \in \mathbb{Z}$ and then

$$
\begin{aligned}
9 k-8 l & =9(2 s+6 t)-8(6 s+3 t) \\
& =-30 s+30 t \\
& =30(t-3)
\end{aligned}
$$

So $9 k-8 l=0 \bmod 30$

Hence, $\phi((k, l)+H)=0 \in \mathbb{Z}_{30}$
Verify that if $9 k-8 l=0 \bmod 30$, then

$$
(k, l)=s(2,6)+t(6,3)
$$

for some $s, t \in \mathbb{Z}$.
We have

$$
\begin{aligned}
\binom{k}{l} & =s\binom{2}{6}+t\binom{6}{3} \\
\Longleftrightarrow\binom{k}{l} & =\left(\begin{array}{ll}
2 & 6 \\
6 & 3
\end{array}\right)\binom{s}{t} \\
\Longleftrightarrow\binom{s}{t} & =\left(\begin{array}{ll}
2 & 6 \\
6 & 3
\end{array}\right)^{-1}\binom{k}{l}=\frac{1}{30}\left(\begin{array}{cc}
-3 & 6 \\
6 & -2
\end{array}\right)\binom{k}{l}
\end{aligned}
$$

Definition:

A group G is called simple when G has no non-trivial proper normal subgroups. Exercise: (Fairly hard)
Show that for $n \geq 3, A_{n}$ is simple.

18 October 25th

Theorem: (Characterization of Internal Direct Products)
Let G be a group and let $H, K \subseteq G$. Suppose $H \unlhd G, K \unlhd G, H \cap K=\{e\}$ and $H K=G$ (where $H K=\{a b \mid a \in H, b \in K\}$). Then $G \cong H \times K$. Indeed, the $\operatorname{map} \phi: H \times K \rightarrow G$ given by $\phi(a, b)=a b$ is an isomorphism.
Proof:
We claim that ϕ is a homomorphism.
For $a, c \in H$ and $b, d \in K$. We have

$$
\begin{aligned}
\phi((a, b) \cdot(c, d)) & =\phi(a c, b d) \\
& =a c b d
\end{aligned}
$$

and

$$
\begin{aligned}
\phi(a, b) \cdot \phi(c, d) & =a b c d \\
& =a c c^{-1} b c b^{-1} b d \\
& =a c e b d \\
& =a c b d
\end{aligned}
$$

because

$$
c^{-1} b c b^{-1}=c^{-1}\left(b c b^{-1}\right) \in H
$$

Since $c^{-1} \in H, b c b^{-1} \in H$. Since $H \unlhd G$.
and

$$
c^{-1} b c b^{-1}=\left(c^{-1} b c\right) b^{-1} \in K
$$

Since $b^{-1} \in K$ and $c^{-1} b c \in K$.
So we have

$$
c^{-1} b c b^{-1} \in H \cap K=\{e\}
$$

Note that ϕ is surjective since $H K=G$. (So every element in G is of the form $a b$ for some $a \in H, b \in K$)
Also, ϕ is injective because for $a \in H, b \in K$, we have

$$
\begin{aligned}
\phi(a, b)=e & \Rightarrow a b=e \\
& \Rightarrow a=b^{-1} \\
& \Rightarrow a \text { and } b^{-1} \text { are both in } H \cap K=\{e\} \\
& \Rightarrow a=b^{-1}=e \\
& \Rightarrow(a, b)=(e, e)
\end{aligned}
$$

Theorem (Classification of Groups of Order $2 p$)

Let p be a prime number and let G be a group with $|G|=2 p$. Then, either $G \cong \mathbb{Z}_{2 p}$ or $G \cong D_{p}$.
Proof: Exercise.
Theorem (Classification of Groups of Order p^{2})
Let p be a prime number and let G be a group with $|G|=p^{2}$. Then, either $G \cong \mathbb{Z}_{p^{2}}$ or $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Proof:
For $a \in G$. Since $|a|||G|$, we have $| a \mid=1, p$, or p^{2}.
Suppose $G \not \not \mathbb{Z}_{p^{2}}$. So G is not cyclic. Then G has no elements $a \in G$ with $|a|=p^{2}$.
So every $e \neq a \in G$ has order p.
Let $e \neq a \in G$. We claim that $\langle a\rangle \unlhd G$.
Suppose, for a contradiction, that $\langle a\rangle \nexists G$.

Side Note:

$H \unlhd G$ when $x h x^{-1} \in H$ for all $x \in G, h \in H$.
Choose $x \in G$ and $a^{k} \in\langle a\rangle$. So that $x a^{k} x^{-1} \notin\langle a\rangle$.
It follows that $x a x^{-1} \notin\langle a\rangle$, since if we had $x_{a x^{-1}} \in\langle a\rangle$, then we would have $\left(x a x^{-1}\right)^{k} \in\langle a\rangle$, but $\left(x a x^{-1}\right)^{k}=x a x^{-1} x a x^{-1} \ldots x a x^{-1}=x a^{k} x^{-1}$.
Since $x a x^{-1} \neq e, \therefore\left|x a x^{-1}\right|=p$.
Since $\langle a\rangle$ and $\left\langle x a x^{-1}\right\rangle$ are distinct p-element subgroups of $G,\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle$ is a proper subgroup of $\langle a\rangle$ whose only subgroups are $\{e\}$ and $\langle a\rangle$ (because $\langle a\rangle \cong \mathbb{Z}_{p}$)

Thus, $\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle=\{e\}$
Since $\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle=\{e\}$, it follows that the cosets, $e\left\langle x a x^{-1}\right\rangle, a\left\langle x a x^{-1}\right\rangle, a^{2}\left\langle x a x^{-1}\right\rangle, \ldots, a^{p-1}\left\langle x a x^{-1}\right\rangle$ are all distinct. Indeed

$$
\begin{aligned}
a^{k}\left\langle x a x^{-1}\right\rangle=a^{l}\left\langle x a x^{-1}\right\rangle & \Rightarrow a^{l-k} \in\left\langle x a x^{-1}\right\rangle \\
& \Rightarrow a^{l-k} \in\langle a\rangle \cap\left\langle x a x^{-1}\right\rangle=\{e\} \\
& \Rightarrow a^{l-k}=e \\
& \Rightarrow a^{l}=a^{k}
\end{aligned}
$$

Since $|G|=p^{2}$ and these p-element cosets are distinct, G is the union of these cosets.
In particular, x^{-1} lies in one of the cosets, say $x^{-1} \in a^{k}\left\langle x a x^{-1}\right\rangle$, say $x^{-1} \in$ $a^{k}\left(x a x^{-1}\right)^{l}=a^{k} x a^{l} x^{-1}$.
Then, $e=a^{k} x a^{l}$.
So $x=a^{-k-l} \in\langle a\rangle$.
Hence, $x a x^{-1} \in\langle a\rangle$, which contradicts our choice of x.
This proves that $\langle a\rangle \unlhd G$. Since $e \neq a \in G$ was arbitrary, $\langle a\rangle \unlhd G$ for all $a \in G$. Let $e \neq a \in G$. Choose $b \in G$ with $b \notin\langle a\rangle$. Then $\langle a\rangle$ and $\langle b\rangle$ are distinct, p-element cyclic subgroups of G.
So $\langle a\rangle \cap\langle b\rangle=\{e\}$
(Since it is a proper subgroup of $\langle a\rangle \cong \mathbb{Z}_{p}$).
As above, it follows that the cosets $e\langle b\rangle, a\langle b\rangle, a^{2}\langle b\rangle, \ldots, a^{p-1}\langle b\rangle$ are all distinct. (if $a^{k}\langle b\rangle=a^{l}\langle b\rangle$, then $a^{l-k} \in\langle b\rangle$. So that $\langle a\rangle \leq\langle b\rangle$).
As above, G is the union of these distinct cosets.
Thus, every element in G is of the form $a^{k} b^{l}$ for some $k, l \in \mathbb{Z}$.
So we have

$$
G=\langle a\rangle\langle b\rangle
$$

Since $\langle a\rangle \unlhd G,\langle b\rangle \unlhd G,\langle a\rangle \cap\langle b\rangle=\{e\}$, and $G=\langle a\rangle\langle b\rangle$.
and so we have

$$
G \cong\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

by the Characterization of Direct Products.

19 October 28th

Group Actions and Representations
 Definition:

A representation of a group G is a group homomorphism, $\rho: G \rightarrow \operatorname{Perm}(S)$ for some set S.
An injective representation is called faithful.

When $\rho: G \rightarrow \operatorname{Perm}(S)$ is faithful, we sometimes identity G with the isomorphic group $\rho(G) \leq \operatorname{Perm}(G)$.
An action of a group G on a set S is a function $*: G \times S \rightarrow S$, where for $a \in G$ and $x \in S$, we write $*(a, x)$ as $a * x$ or sometimes just as $a x$, such that

1. $e x=x$ for all $x \in S$ and
2. $a(b x)=(a b) x$ for all $a, b \in G$ and $x \in S$.

Note that there is a natural bijective correspondence between the set of all group actions of G on S and the set of all representations $\rho: G \rightarrow \operatorname{Perm}(S)$.
The action and its corresponding representation are related by

$$
a+x=\rho(a)(x)
$$

for $a \in G$ and $x \in S$.

Example:

When G acts on itself by left multiplication. (So $a * x=a x$ for all $a, x \in G$), the corresponding representation $\rho: G \rightarrow \operatorname{Perm}(G)$ is given by $\rho(a)(x)=a x$, that is $\rho(a)=l_{a}$, where $l_{a}: G \rightarrow G$ is given by $l_{a}(x)=a x$.
This representation is faithful (since for $a, b \in G$, if $l_{a}=l_{b}$, then $l_{a}(x)=l_{b}(x)$ for all $x \in G$. So $\left.a=a \cdot e=l_{a}(e)=l_{b}(e)=b e=b\right)$
This was used in the proof of Cayley's Theorem.
Example:
When G acts on itself by conjugation, that is when

$$
a * x=a x a^{-1}
$$

The corresponding representation $\rho: G \rightarrow \operatorname{Perm}(G)$ is given by $\rho(a)(x)=$ $a x a^{-1}=C_{a}(x)$, that is $\rho(a)=C_{a}$, where $C_{a}: G \rightarrow G$ is given by $C_{a}(x)=a x a^{-1}$ We have

$$
\operatorname{Im}(\rho)=\rho(G)=\operatorname{Inn}(G)
$$

and $\operatorname{Ker}(\rho)=Z(G)$
So we have $Z(G) \unlhd G$ and $G / Z(G) \cong \operatorname{Inn}(G)$

Example:

Let R be a commutative ring with 1 .
When $G L_{n}(R)$ acts on R^{n} by matrix multiplication. The corresponding representation $\rho: G L_{n}(R) \rightarrow \operatorname{Perm}\left(R^{n}\right)$ is given by $\rho(A)(x)=A x=L_{A}(x)$ where $L_{A}: R^{n} \rightarrow R^{n}$ is given by $L_{A}(x)=A x$, so we have $\rho(A)=L_{A}$. This representation is faithful (and we often identify a matrix A with its associated linear $\left.\operatorname{map} \rho(A)=L_{A}\right)$

Definition:

Let G be a group which acts on a set S.
When $a \in G$, the fixed set of a is the set

$$
\operatorname{Fix}(a)=\operatorname{Fix}_{G}(a)=\{x \in S \mid a x=x\} \subseteq S
$$

For $x \in S$, the orbit of x is the set

$$
\operatorname{Orb}(x)=\operatorname{Orb}_{G}(x)=\{a x \mid a \in G\} \subseteq S
$$

For $x \in S$, the stabilizer of x is the subgroup

$$
\operatorname{Stab}(x)=\operatorname{Stab}_{G}(x)=\{a \in G \mid a x=x\} \leq G
$$

Note that $\operatorname{Stab}(x) \leq G$ because $e \in \operatorname{Stab}(x)$ since $e \cdot x=x$.
If $a, b \in \operatorname{Stab}(x)$, so $a x=x$ and $b x=x$.
Then $(a b)(x)=a(b x)=a x=x$.
So that $a, b \in \operatorname{Stab}(x)$, and if $a \in \operatorname{Stab}(x)$, so $a x=x$.
Then $a^{-1} x=a^{-1}(a x)=\left(a^{-1} a\right) x=e x=x$
So that $a^{-1} \in \operatorname{Stab}(x)$
Example:
When $S O_{2}(\mathbb{R})=\left\{R_{\theta} \mid \theta \in \mathbb{R}\right\}$ acts on \mathbb{R}^{2}, for $u \in \mathbb{R}^{2}$

$$
\begin{aligned}
\operatorname{Orb}(u) & =\left\{A u \mid A \in S O_{2}(\mathbb{R})\right\} \\
& =\left\{x \in \mathbb{R}^{2}| | x|=|u|\}\right.
\end{aligned}
$$

When $S O_{n+1}(\mathbb{R})$ acts on \mathbb{R}^{n+1}, and $e_{n+1}=(0, \ldots, 0,1)^{T}$

$$
\begin{aligned}
\operatorname{Orb}\left(e_{n+1}\right) & =\left\{A e_{n+1} \mid A \in S O_{n+1}(\mathbb{R})\right\} \\
& =\mathbb{S}^{n}=\left\{u \in \mathbb{R}^{n+1}| | u \mid=1\right\}
\end{aligned}
$$

(Since $A e_{n+1}$ is the last column of A, which can be any unit vector and

$$
\begin{aligned}
& \operatorname{Stab}\left(e_{n+1}\right) \\
= & \left\{A \in S O_{n+1}(\mathbb{R}) \mid A e_{n+1}=e_{n+1}\right\} \\
= & \left\{\left.\left[\begin{array}{c|c}
B & 0 \\
\hline 0 & 1
\end{array}\right] \right\rvert\, B \in S O_{n}(\mathbb{R})\right\}
\end{aligned}
$$

)

Example:

When G is a group and $H \leq G$ and H acts on G by right-multiplication, that is $h * x=x h$ for $h \in H$ and $x \in G$, the orbit of an element $a \in G$ is

$$
\begin{aligned}
\operatorname{Orb}(a) & =\{a h \mid h \in H\} \\
& =a H
\end{aligned}
$$

20 October 30th

A representation of G is a group homomorphism $\rho: G \rightarrow \operatorname{Perm}(S)$ for some set S.
An action of G on S is a map $*: G \times S \rightarrow S$, where we write $*(a, x)$ as $a * x$ and sometimes as $a x$ such that

$$
e x=x \text { for all } x \in S
$$

$a(b x)=(a b) x$ for all $a, b \in G, x \in S$.
These are the same thing:

$$
\rho(a)(x)=a * x
$$

$$
\operatorname{Fix}(a)=\{x \in S \mid a x=x\}, \operatorname{Orb}(x)=\{a x \mid a \in G\}, \operatorname{Stab}(x)=\{a \in G \mid a x=x\}
$$

When a group G acts on a set S, we can define an equivalence relation \sim on S by

$$
\begin{aligned}
x \sim y & \Longleftrightarrow y=a \cdot x \text { for some } a \in G \\
& \Longleftrightarrow y \in \operatorname{Orb}(x)
\end{aligned}
$$

This is an equivalence relation because

$$
x \sim x
$$

Since $x=e x \in \operatorname{Orb}(x)$
If $x \sim y$, say $y=a x$, then

$$
\begin{aligned}
a^{-1} y & =a^{-1}(a x)=\left(a^{-1} a\right) x \\
& =e x=x
\end{aligned}
$$

So $y \sim x$.
And if $x \sim y$ and $y \sim z$
Say $y=a \cdot x$ and $z=b \cdot y$, then $z=b y=b(a x)=(b a) x$
So $x \sim z$.
Note that, using this equivalence relation,

$$
\begin{aligned}
{[x] } & =\{y \in S \mid x \sim y\} \\
& =\{y \in S \mid y=a \cdot x \text { for some } a \in G\} \\
& =\{a x \mid a \in G\} \\
& =\operatorname{Orb}(x)
\end{aligned}
$$

We write S / \sim as S / G.
So

$$
\begin{aligned}
S / G & =\{[x] \mid x \in S\} \\
& =\{\operatorname{Orb}(x) \mid x \in S\}
\end{aligned}
$$

and S is the disjoint union of the disjoint orbits.

Examples:

When $H \leq G$ and H acts on G by right multiplication, so $h * a=a h$ for $a \in G, h \in H$
We have $\operatorname{Orb}(a)=\{a h \mid h \in H\}=a H$
In this case, our new notation G / H agrees with our previous notation

$$
G / H=\{a H \mid a \in G\}
$$

(When H acts on G by left multiplication, so $h * a=h a$ for $h \in H, a \in G$, our new and old notations do not agree)
Theorem (The Orbit / Stabilizer Theorem)
Let G be a fintie group which acts on a set S. For each $x \in S$,

$$
|\operatorname{Orb}(x)| \cdot|\operatorname{Stab}(x)|=|G|
$$

Proof:

Let $x \in S$, let $H=\operatorname{Stab}(x) \leq G$.
We know (from Lagrange's Theorem)

$$
|G|=|G / H| \cdot|H|
$$

We need to show that

$$
|\operatorname{Orb}(x)|=|G / H|=|G / \operatorname{Stab}(x)|
$$

Define $F: G / H \rightarrow \operatorname{Orb}(x)$ by $F(a H)=a x$ for $a \in G$.
Note that F is well-defined, because, for $a, b \in G$, if $a H=b H$, then $b^{-1} a \in$ $H=\operatorname{Stab}(x)$.
So $\left(b^{-1} a\right)(x)=x$
Hence, $a x=b x$.
F is clearly surjective. Note that F is injective because for $a, b \in G$. If $F(a H)=$ $F(b H)$, then $a x=b x$.
So $b^{-1} a x=x$.
Hence, $b^{-1} a \in \operatorname{Stab}(x)=H$.
Hence, $a H=b H$.
Theorem (Burnside's Counting Lemma or
The Cauchy-Frobenius Counting Lemma)
Let G be a finite group which acts on a finite set S. Then

$$
|S / G|=\frac{1}{|G|} \sum_{a \in G}|\operatorname{Fix}(a)|
$$

Proof:

Let $T=\{(a, x) \mid a \in G, x \in S, a x=x\}$
Then $|T|=\sum_{a \in G}|\{x \in S \mid a x=x\}|=\sum_{a \in G}|\operatorname{Fix}(a)|$ and

$$
\begin{aligned}
|T| & =\sum_{x \in S}|\{a \in G \mid a x=x\}| \\
& =\sum_{x \in S}|\operatorname{Stab}(\mathrm{x})| \\
& =\sum_{x \in S} \frac{|G|}{|\operatorname{Orb}(x)|} \\
& =\sum_{A \in S / G} \sum_{x \in S} \frac{|G|}{|A|} \\
& =\sum_{A \in S / G}|G| \\
& =|G||S / G|
\end{aligned}
$$

Thus, $|G||S / G|=\sum_{a \in G}|\operatorname{Fix}(a)|$

Example:

Find the number of ways to colour the 6 vertices of a regular hexagon using 3 colours, up to equivalence under symmetry under the natural action of D_{6}.

Example:

Find the number of ways to colour the 8 vertices of a cube, up to symmetry under the group of rotations in $\mathrm{SO}_{3}(\mathbb{R})$ of the cube, using 2 colours.

Solution:

Let G be the group of rotations of the cube and let S be the set of all possible 2^{8} colourings of the vertices (ignoring symmetry).
G acts on S and we need to find $|S / G|$.
A picture here, refer to the photos.
If we fix a vertex x, then under the action of G, on the 8 vertices of the cube

$$
|G|=|\operatorname{Stab}(x)| \cdot|\operatorname{Orb}(x)|
$$

We have $|\operatorname{Orb}(x)|=8$ and $|\operatorname{Stab}(x)|=3$. Hence, $|G|=24$.
Pictures here. Refer to the photos.

21 November 1st

The table below comes with accompanying pictures. Refer to photos.

Type of A	\# of such A	\mid Fix $(A) \mid$
I	1	2^{8}
$R_{V, \pm \frac{2 \pi}{3}}$	8	2^{4}
$R_{E, \pi}$	6	2^{4}
$R_{F, \pm \frac{\pi}{2}}$	6	2^{2}
$R_{F, \pi}$	3	2^{4}

Thus, we have

$$
\begin{aligned}
|S / G| & =\frac{1}{|G|} \sum_{A \in G}|\operatorname{Fix}(A)| \\
& =\frac{1}{24}\left(1 \cdot 2^{8}+8 \cdot 2^{4}+6 \cdot 2^{4}+6 \cdot 2^{2}+3 \cdot 2^{4}\right) \\
& =\frac{1}{3}(32+16+12+3+6) \\
& =23
\end{aligned}
$$

If we use n colours, we get

$$
\begin{aligned}
|S / G| & =\frac{1}{24}\left(1 \cdot n^{8}+8 \cdot n^{4}+6 n^{4}+6 n^{2}+3 n^{4}\right) \\
& =\frac{1}{24}\left(n^{8}+17 n^{4}+6 n^{2}\right)
\end{aligned}
$$

In particular, $n^{8}+17 n^{4}+6 n^{2}=0 \bmod 24$ for all $n \in \mathbb{Z}^{+}$.
Theorem (The Class Equation)
Let G be a finite group. Let m be the number of conjugacy classes in G.
(The conjugacy class of $x \in G$ is $C l(x)=\left\{a x a^{-1} \mid a \in G\right\}$)
Choose elements x_{1}, \cdot, x_{m} with one from each conjugacy class.
Then

$$
|G|=\sum_{k=1}^{m}\left|G / C\left(x_{k}\right)\right|
$$

where $C\left(x_{k}\right)=\left\{a \in G \mid a x_{k}=x_{k} a\right\}$, which is the centralizer of x_{k} in G.

Proof:

When G acts on itself by conjugation, (so $a * x=a x a^{-1}$) for $x \in G$,

$$
\operatorname{Orb}(x)=\left\{a x a^{-1} \mid a \in G\right\}=C l(x)
$$

and

$$
\operatorname{Stab}(x)=\left\{a \in G \mid a x a^{-1}=x\right\}=C(x) \leq G
$$

By the Orbit / Stabilizer Theorem, $|G / \operatorname{Stab}(x)|=|\operatorname{Orb}(x)|$
Since G is the disjoint union of the orbits, (and we selected one element x_{k} from each orbit)

$$
\begin{aligned}
|G| & =\sum_{k=1}^{m}\left|\operatorname{Orb}\left(x_{k}\right)\right|=\sum_{k=1}^{m}\left|G / \operatorname{Stab}\left(x_{k}\right)\right| \\
& =\sum_{k=1}^{m}\left|G / C\left(x_{k}\right)\right|
\end{aligned}
$$

Theorem (Cauchy's Theorem)

Let G be a finite group with $|G|=n$.
Let p be a prime factor of n. Then G has an element of order p.
In fact, we shall prove that

$$
|\{a \in G||a|=p\} \mid=p-1 \quad \bmod p(p-1)
$$

Proof:
Let $m=|\{a \in G| | a \mid=p\}|$
Note that $m=l-1$ where

$$
l=\left|\left\{a \in G \mid a^{p}=e\right\}\right|
$$

Recall that m is a multiple of $\phi(p)=p-1$.
So $m=0 \bmod p-1$
So $m=p-1 \bmod p-1$
It remains to show that $m=p-1 \bmod p$.
Let $S=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right) \mid\right.$ each $x_{k} \in G$ and $\left.\prod x_{k}=e\right\}$ and \mathbb{Z}_{p} act on S by cyclic permutation, so

$$
k *\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left(x_{k+1}, x_{k+2}, \ldots, x_{p}, x_{1}, x_{k}\right)
$$

Then for $x=\left(x_{1}, \ldots, x_{p}\right) \in S$

$$
|\operatorname{Orb}(x)|= \begin{cases}1 & \text { if } x=(a, a, \ldots, a) \text { where } a \in G \text { with } a^{p}=e \\ p & \text { otherwise }\end{cases}
$$

Since S is the disjoint union of the orbits

$$
|S|=1 \cdot l+p \cdot t
$$

So that $l=|s| \bmod p$, but also we have

$$
|S|=n^{p-1}=n=0 \quad \bmod p
$$

(Since we can choose $x_{1}, \ldots, x_{p-1} \in G$ arbitrarily and then $x_{p}=\left(x_{1}, x_{2}, \ldots, x_{p-1}\right)^{-1}$ to get $\prod x_{k}=e$)
Hence,

$$
l=0 \quad \bmod p
$$

So $m=l-1=-1=p-1 \bmod p$ as required.

22 November 4th

Theorem (The Classification of Finite Abelian Groups)

1. Every finite abelian group is isomorphic to a unique group of the form $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \mathbb{Z}_{n_{l}}$ for some $l \geq 0(l=0$ gives the trivial group $)$ and some $n_{i} \in \mathbb{Z}^{+}$with $n_{1}\left|n_{2}, n_{2}\right| n_{3}, \ldots, n_{l-1} \mid n_{l}$.
2. Every finite abelian group is isomorphic to a unique group of the form $\mathbb{Z}_{p_{1} k_{1}} \times \mathbb{Z}_{p_{2} k_{2}} \times \ldots \mathbb{Z}_{p_{m} k_{m}}$ for some $m \geq 0$, and some primes p_{1}, \ldots, p_{m} with $p_{1} \leq p_{2} \leq \cdots \leq p_{m}$ and some $k_{i} \in \mathbb{Z}^{+}$with $k_{i} \geq k_{i+1}$ when $p_{i}=p_{i+1}$
Recall that for $k, l \in \mathbb{Z}^{+}, \mathbb{Z}_{k} \times \mathbb{Z}_{l} \cong \mathbb{Z}_{k l} \Longleftrightarrow \operatorname{gcd}(k, l)=1$.

Preliminary Definitions

Definition:

A free abelian group of rank n is a group which is isomorphic to \mathbb{Z}^{n}.
Remark: In this chapter, we use additive notation for abelian groups.
Note that the rank of the abelian group is unique: $G \cong \mathbb{Z}^{n}$ and $G \cong \mathbb{Z}^{m}$ with $n, m \in \mathbb{Z}^{+}$, then we must have $n=m$.

Sketch Proof:

If $G \cong \mathbb{Z}^{n}$ and $G \cong \mathbb{Z}^{m}$, then we have $\mathbb{Z}^{n} \cong \mathbb{Z}^{m}$.
Let $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ be an isomorphism.
Note that ϕ restricts to an isomorphism, $\phi: 2 \mathbb{Z}^{n} \rightarrow 2 \mathbb{Z}^{m}$.
Verify that ϕ determines an isomorphism

$$
\Phi: \mathbb{Z}^{n} / 2 \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m} / 2 \mathbb{Z}^{m}
$$

Also, verify that $\mathbb{Z}^{n} / 2 \mathbb{Z}^{n} \cong\left(\mathbb{Z}_{2}\right)^{n}$.
It follows that

$$
\left(\mathbb{Z}_{2}\right)^{n} \cong \mathbb{Z}^{n} / 2 \mathbb{Z}^{n} \cong \mathbb{Z}^{m} / 2 \mathbb{Z}^{m} \cong\left(\mathbb{Z}_{2}\right)^{m}
$$

So

$$
\left|\mathbb{Z}_{2}^{n}\right|=\left|\mathbb{Z}_{2}^{m}\right|
$$

That is $2^{n}=2^{m}$. Hence $n=m$.

Familiar Terminology:

Let G be an abelian group, and let $S \subseteq G$. A linear combination (over \mathbb{Z}) of elements in S is an element in G of the form

$$
\sum_{i=1}^{l} t_{i} u_{i}
$$

with $l \geq 0$, each $t_{i} \in \mathbb{Z}$, and each $u_{i} \in S$.
(If we want, we can require that the u_{i} are distinct.)
The span of S (over \mathbb{Z}) is the set of linear combination:

$$
\langle S\rangle=\operatorname{Span}_{\mathbb{Z}}(S)=\left\{\sum_{i=1}^{l} t_{i} u_{i} \mid l \geq 0, \text { each } t_{i} \in \mathbb{Z}, \text { each } u_{i} \in S\right\}
$$

We say that S spans $G($ over $\mathbb{Z})$ with $G=\operatorname{Span}_{\mathbb{Z}}(S)$.

We say that S is linearly independent (over \mathbb{Z}), when for all $t_{i} \in \mathbb{Z}$ and $u_{i} \in S$ distinct, if $\sum_{i=1}^{l} t_{i} u_{i}$, then each $t_{i}=0$.
We say that S is a basis for G (over \mathbb{Z}), when S is linearly independent and spans G.
An n-element ordered basis for G is an n-tuple, $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of distinct elements in G such that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for G.
Side Note: Drop the repetition?

Note:

A group G is a free abelian group of rank n if and only if G has a basis with n (distinct) elements.

Sketch Proof:

If G is abelian, $G \cong \mathbb{Z}^{n}$ and $\phi: \mathbb{Z}^{n} \rightarrow G$ is an isomorphism, then for $u_{k}=$ $\phi\left(e_{k}\right)=\phi(0,0,0, \ldots, 1,0, \ldots, 0)\left(1\right.$ at $k^{t h}$ position.)
The set $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis with n distinct elements.
Conversely, if $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for G with distinct elements, then the map $\phi: \mathbb{Z}^{n} \rightarrow G$ given by $\phi\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i} u_{i}$ is an isomorphism.

Note:

When $\left(u_{1}, \ldots, u_{n}\right)$ is an ordered basis for the free abelian group G, we can obtain new basis by performing any of the following 3 operations

1. $u \mapsto \pm u_{k}$ (replace u_{k} by $\pm u_{k}$)
2. $u_{k} \leftrightarrow u_{l}$ (interchanging u_{k} with u_{l})
3. $u \mapsto u_{k}+t u_{l}$ with $t \in \mathbb{Z}$ (replace u_{k} by u_{k} plus an integer multiple of u_{l} when $l \neq k$)

Side Note: Analogy to $k \vec{v}, k \in \mathbb{Z}$

Examples:

$$
\left\{\binom{3}{6},\binom{6}{2}\right\} \subseteq \mathbb{Z}^{2}
$$

is linearly independent (over \mathbb{Z}).

$$
H=\operatorname{Span}_{\mathbb{Z}}\left\{\binom{3}{6},\binom{6}{2}\right\}
$$

is a free abelian group of rank 2 .
Proof Later?
Also, check picture.
Theorem (Classification of Subgroups and Quotient Groups of Finite Rank Abelian Group)
Let G be a free abelian group of rank n, let $H \leq G$. Then H is a free abelian group of rank at most n. In other words, $0 \leq r \leq n$. (with $r=0$ giving the trivial group $H=\{0\}$ which consider to be a free group with empty basis), and there exists integers, $d_{i}, d_{2}, \ldots, d_{r} \in \mathbb{Z}^{+}$with $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{r-1} \mid d_{r}$ such that

$$
G / H \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \ldots \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}
$$

23 November 6th

Sketch Proof:

To prove this, we shall show that there exists $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ for G and there exist $d_{1}, d_{2}, \ldots, d_{r}$ as above such that $\left\{d_{1} u_{1}, d_{2} u_{2}, \ldots, d_{r} u_{r}\right\}$ is a basis for H with each $d_{i} \in \mathbb{Z}^{+}$with $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{r-1} \mid d_{r}$.
If we can find a basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ for G and a basis $\left\{d_{1} u_{1}, \ldots, d_{r} u_{r}\right\}$ for H. Then, as an exercise, verify that the map $\phi: G \rightarrow \mathbb{Z}_{d_{1}} \times \ldots \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}$ by $\phi\left(\sum_{i=1}^{n} t_{i} u_{i}\right)=\left(t_{1}, \ldots, t_{n}\right)$ is a well-defined surjective group homomorphism with $\operatorname{Ker}(\phi)=H$.
So that we have

$$
G / H \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \ldots \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}
$$

We shall prove that such bases for G and H exist by induction on n, the rank of G
When $n=0$, (so $G=\{0\}$), there is nothing to prove.
Can start at $n=1$, use the knowledge of cyclic group. Not necessary.
Let $n \geq 1$, (or $n \geq 2$) and suppose the theorem holds for all free abelian groups G_{0} of rank $n-1$ and all subgroups $H_{0} \leq G_{0}$.
Let G be a free abelian group of rank n and let $H \leq G$.
If $H=\{0\}$ is trivial, there is nothing to prove. (the empty set is a basis for $H=\{0\}$ and we take $r=0$)
Suppose $H \neq\{0\}$, note that if $0 \neq a \in H$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is any basis for G. Then when we write $a=\sum_{i=1}^{n} t_{i} v_{i}$ with each $t_{i} \in \mathbb{Z}$, at least one of the coefficients $t_{i} \neq 0$.
Choose d_{1} to be the smallest positive integer (Main trick of the theorem!!) which is equal to one of the coefficients t_{i} in some linear combination $a=\sum_{i=1}^{n} t_{i} v_{i}$ for some $a \in H$ and for some basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for G.
Choose a particular basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for G and a particular element $a \in H$ of the form

$$
a=d_{1} v_{1}+t_{2} v_{2}+\cdots+t_{n} v_{n} \in H
$$

Note: by our choice of $d_{1}, d_{i} \mid t_{i}$ for $2 \leq i \leq n$, since $2 \leq h \leq n$..
We can write

$$
t_{k}=q \cdot d_{1}+r
$$

for $0 \leq r<d$.
Then we have

$$
\begin{aligned}
a & =d_{1} v_{1}+t_{2} v_{2}+\cdots+\left(q \cdot d_{1}+r\right) v_{k}+\cdots+t_{n} v_{n} \\
& =d_{1}\left(v_{1}+q \cdot v_{k}\right)+t_{2} v_{2}+\cdots+r v_{k}+\cdots+t_{n} v_{n}
\end{aligned}
$$

So, we must have $r=0$, (if $0<r<d_{1}$, this would contradict our choice of d_{1}, since $\left\{v_{1}+q v_{k}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ is another basis for $\left.G\right)$.
Write $t_{k}=q \cdot d_{1}$ for $2 \leq k \leq n$.
Then $a=d_{1}\left(v_{1}+q_{2} v_{2}+\cdots+q_{n} v_{n}\right)$.

Let $u_{1}=v_{1}+q_{2} v_{2}+\cdots+q_{n} v_{n} \quad\left(\right.$ So $\left.a=d_{1} u_{1} \in H\right)$
and note that $\left\{u_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ is another basis for G.
Let $G_{0}=\operatorname{Span}_{\mathbb{Z}}\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ which is a free abelian group with rank of $n-1$.
Let $H_{0}=H \cap G_{0} \leq G_{0}$.
We claim that every element $b \in H$, can be written uniquely in the form $b=$ $t_{1} d_{1} u_{1}+C$ with $t_{1} \in \mathbb{Z}, c=H_{0}$.
Let $b \in H$, since $b \in G$, we can write b uniquely as $b=s_{1} u_{1}+s_{2} v_{2}+\ldots, s_{n} v_{n}$. (Since $\left\{u_{1}, u_{2}, \ldots, v_{n}\right\}$ is a basis for G).
Note that $d_{1} \mid s_{1}$ using the same argument used above (writing $\left.s_{1}=q \cdot d+r\right)$)
Since $d_{i} \mid s_{i}, s_{1} u_{1}$ is a multiple of $d_{u}=a \in H$.
So $s_{1} u_{1} \in H$.
Hence

$$
s_{2} v_{2}+\cdots+s_{n} v_{n}=b-s_{1} u_{1} \in H
$$

We have $b=s_{1} u_{1}+c=t_{1} d_{1} u_{1}+c$ with $c \in H$.
By the induction hypothesis, we can choose a basis $\left\{u_{2} \ldots, u_{n}\right\}$ for G_{0}. And a basis $d_{2} u_{2}, \ldots, d_{r} u_{r}$ for H_{0} with $d_{2}\left|d_{3}, d_{3}\right| d_{4}, \ldots, d_{r-1} \mid d_{r}$
Also $c \in G_{0}=\operatorname{Span}\left(\left\{v_{2}, \ldots, v_{n}\right\}\right)$, so $c \in H_{0}$.
Thus, every $b \in H$ can be written uniquely in the form $b=t_{1} d_{1} u_{1}+t_{2} d_{2} u_{2}+$ $\cdots+t_{r} d_{r} u_{r}$.
Thus, $\left\{d_{1} u_{1}, \ldots, d_{r} u_{r}\right\}$ is a basis for H.
Finally, verify that $d_{1} \mid d_{2}$.

Examples:

Let $G=\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}$
and let $H=\operatorname{Span}_{\mathbb{Z}}\{(3,6),(6,2)\}$
Note that H has the following bases

$$
\{(3,6),(6,2)+(3,6)\}=\{(3,6),(9,8)\}
$$

$$
\{(3,6)+3(9,8),(9,8)\}=\{(30,30),(9,8)\}=\{1 \cdot(9,8), 30(1,1)\}
$$

Also note that $\{(9,8),(1,1)\}$ is a basis for $G=\mathbb{Z} \times \mathbb{Z}$.
Since $(1,0)=(9,8)-8(1,1)$ and $(0,1)=9(1,1)-(9,8)$

$$
\operatorname{det}\left(\begin{array}{ll}
9 & 1 \\
8 & 1
\end{array}\right)=1,\left(\begin{array}{ll}
9 & 1 \\
8 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-8 & 9
\end{array}\right)
$$

It follows that $n=2, r=2$,

$$
G / H \cong \mathbb{Z}_{1} \times \mathbb{Z}_{30} \times \mathbb{Z}^{0} \cong \mathbb{Z}_{30}
$$

$H=\operatorname{Span}\left\{u_{1}, \ldots, u_{k}\right\}$
$A=\left(u_{1} \ldots u_{k}\right) \in M_{n \times k}$
Row operations and column operations can convert A to the form
Picture here.

24 November 8th

Theorem: (Classification of Finite Abelian Groups)
Let G be a finite abelian group.

1. G is isomorphic to a unique group of the form

$$
\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{l}}
$$

with $l \in \mathbb{Z}$ with $l \geq 0$ and each $n_{i} \in \mathbb{Z}$ with $n_{i} \geq z$ and $n_{1}\left|n_{2}, \ldots, n_{l-1}\right| n_{l}$.
2. G is isomorphic to a unique group of the form

$$
\mathbb{Z}_{p_{1} k_{1}} \times \mathbb{Z}_{p_{2} k_{2}} \times \cdots \times \mathbb{Z}_{p_{m} k_{m}}
$$

where $m \in \mathbb{Z}$ with $m \geq 0$, each p_{i} is prime with $p_{1} \leq p_{2} \leq \cdots \leq p_{m}$, each $k_{i} \in \mathbb{Z}$ with $k_{i} \geq 1$ such that if $p_{i}=p_{i+1}$, then $k_{i} \leq k_{i+1}$.

Sketch Proof:

Let $n=|G|$ and say $G=\left\{a_{1}, \ldots, a_{n}\right\}$.
Define $\phi: \mathbb{Z}^{n} \rightarrow G$ by $\phi\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i} a_{i}$.
Verify that ϕ is a surjective group homomorphism.
By the First Isomorphism Theorem,

$$
G \cong \mathbb{Z}^{n} / H \text { where } H=\operatorname{Ker} \phi
$$

By the previous theroem, we have

$$
G \cong \mathbb{Z}^{n} / H \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \cdots \times \mathbb{Z}_{d_{r}} \times \mathbb{Z}^{n-r}
$$

for some $0 \leq r \leq n$ and some $d_{i} \in \mathbb{Z}^{+}$
with some $d_{i} \in \mathbb{Z}^{+}$with $d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{r-1} \mid d_{r}$.
Note that we must have $n=r$ since G is finite.
So

$$
G \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \ldots \mathbb{Z}_{d_{n}}
$$

Say $d_{1}=d_{2}=\cdots=d_{k}=1$ and $d_{k+1} \geq 2$.
Then we can take $n_{i}=d_{k+i}$ for $i \leq i \leq l$ where $l=n-k$.
This puts G up to isomorphism, into the form in Part (1).
Verify that there is a bijective correspondence between the forms described in Parts (1) and (2).
Examples:

$$
\begin{aligned}
& \mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{60} \times \mathbb{Z}_{3600} \\
= & \mathbb{Z}_{2} \times \mathbb{Z}_{2 \cdot 3} \times \mathbb{Z}_{2^{2} \cdot 3 \cdot 5} \times \mathbb{Z}_{2^{4 \cdot 3}}{ }^{2 \cdot 5} \\
\cong & \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{2^{4}} \times \mathbb{Z}_{3^{2}} \times \mathbb{Z}_{5^{2}} \\
\cong & \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{4}} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{2}} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{Z}_{2^{1}} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{3}} \times \mathbb{Z}_{3^{1}} \times \mathbb{Z}_{3^{4}} \times \mathbb{Z}_{3^{4}} \times \mathbb{Z}_{5^{1}} \times \mathbb{Z}_{5^{2}} \\
\cong & \mathbb{Z}_{2^{1}} \times\left(\mathbb{Z}_{2^{2}} \times \mathbb{Z}_{3^{1}}\right) \times\left(\mathbb{Z}_{2^{2}} \times \mathbb{Z}_{3^{4}} \times \mathbb{Z}_{5^{1}}\right) \times\left(\mathbb{Z}_{2^{3}} \times \mathbb{Z}_{3^{4}} \times \mathbb{Z}_{5^{2}}\right) \\
\cong & \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2} \cdot 3} \times \mathbb{Z}_{2^{2} \cdot 3^{4} \cdot 5^{1}} \times \mathbb{Z}_{2^{3} \cdot 3^{4} \cdot 5^{2}}
\end{aligned}
$$

Finally, we verify that the form of Part (2) is unique (up to isomorphism)
Let $G \cong \mathbb{Z}_{p_{1} k_{1}} \times \mathbb{Z}_{p_{1} k_{2}} \times \cdots \times \mathbb{Z}_{p_{m} k_{m}}$ as in Part (2).
We shall show that the prime powers $p_{i}{ }^{k_{i}}$ are determined from the number of elements in G of each order.
Fix a prime p, let $n_{k}=$ the number of $a \in G$ with $|a| / p^{k}$. (That is $|a| \in$ $\left\{1, p, p^{2}, \ldots, p^{k}\right\}$)
Let $a_{k}=$ the number of indices i such that $p_{i}=p$ and $k_{i}=k$.
Let $b_{k}=$ the number of indices i such that $p_{i}=p$ and $k_{i} \geq k$.
Recall that if $a_{i} \in \mathbb{Z}_{p_{i} k_{i}}$. So $a=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}_{p_{1} n_{1}} \times \ldots \mathbb{Z}_{p_{m} k_{m}}$, then $|a|=\operatorname{lcm}\left(\left|a_{1}\right|, \ldots,\left|a_{m}\right|\right)$

Side Note:

In $\mathbb{Z}_{p^{k}}$, there are $\phi(p)=p-1$ elements a with $|a|=p$. So that there are p elements a with $|a|=1$ or p
We have

$$
\begin{aligned}
n_{1} & =\# \text { of } a \in G \text { such that }|a|=1 \text { or } p \\
& =p^{b_{1}}
\end{aligned}
$$

(there are p choices for each $\mathbb{Z}_{p_{i} k_{i}}$ with $p_{i}=p, k_{i} \geq 1$)

$$
\begin{aligned}
n_{2} & =\# \text { of } a \in G \text { such that }|a|=1, p, \text { or } p^{2} \\
& =p^{a_{1}} \cdot p^{2 b_{2}}
\end{aligned}
$$

(there are p choices for each $\mathbb{Z}_{p_{i} k_{i}}$ with $p_{i}=p, k_{i}=1$ and there are p^{2} choices for each $\mathbb{Z}_{p_{i} k_{i}}$ with $p_{i}=p, k_{i} \geq 2$)

$$
n_{3}=p^{a_{1}} p^{2 a_{2}} p^{3 b_{3}}
$$

and so on, solution

$$
n_{k}=p^{a_{1}} p^{2 a_{2}} \ldots p^{(k-1) a_{k-1}} p^{k b_{k}}
$$

Also, note that

$$
a_{k}=b_{k}-b_{k+1}
$$

It follows that

$$
\begin{aligned}
\frac{n_{k}}{n_{k-1}} & =\frac{p^{(k-1) a_{k-1}} p^{k b_{k}}}{p^{(k-1) b_{k-1}}} \\
& =\frac{p^{(k-1) a_{k-1}} p^{k b_{k}}}{p^{(k-1)\left(a_{k-1}+b_{k}\right)}} \\
& =p^{b_{k}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{a_{k}} & =p^{b_{k}-b_{k+1}}=p^{b_{k}} / p^{b_{k+1}} \\
& =\frac{n_{k}}{n_{k-1}} / \frac{n_{k+1}}{n_{k}} \\
& =\frac{n_{k}^{2}}{n_{k-1} n_{k+1}} \\
a_{k} & =\log _{p}\left(\frac{n_{k}^{2}}{n_{k-1} n_{k+1}}\right)
\end{aligned}
$$

Fact (Gauss)

$$
U_{2} \cong \mathbb{Z}_{1}, U_{4} \cong \mathbb{Z}_{2}, U_{8} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}, U_{2^{n}} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \text { for } n \geq 3
$$

and

$$
U_{p^{k}} \cong \mathbb{Z}_{\phi\left(p^{k}\right)}
$$

where $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

25 November 11th

Chapter 8 Rings

Definition:

A ring is a set R with an element $O \in R$ and two binary operations + and \times such that

1. + is associative
2. + is commutative
3. O is an additive identity
4. Every $a \in R$ has an additive inverse
5. \times is associative
6. \times is distributive over + for all $a, b, c \in R, a(b+c)=a b+a c$ and $(a+b) c=$ $a c+b c$.
R is commutative when \times is commutative.
R has an identity (or R has a 1) when there is an element $1 \in R$ with $1 \neq 0$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$.
When R has a 1 and $a \in R$, we say that a is invertible, or that a is a unit, when there exists $b \in R$ such that $a b=b a=1$
A field is a commutative ring in which every non-zero element is invertible.
In any ring R, we have $0 \cdot a=0$ for all a, (also $a \cdot 0=0$ for all $a \in R$).

Proof:

Let $a \in R$, then $0 \cdot a=(0+0)$ by property (3)
Then $=0 \cdot a+0 \cdot a$ by property (6)
By (4), we can choose $b \in R$ such that $0 \cdot a+b=0$.
Then we have
$0 \cdot a=0 \cdot a+0 \cdot a$ (as above)
$0 \cdot a+b=(0 \cdot a+0 \cdot b)+b=0 \cdot a+(0 \cdot a+b)$ by (1)
$0=0 \cdot a+0$ since $0 \cdot a+b=0$.
$\therefore 0=0 \cdot a$ by (3).
Note that we do have additive cancellation:
If $a+b=a+c$ or if $b+a=c+a$, then $b=c$.
In general, we do not have multiplicative cancellation, $(a b=a c$ does not imply that $b=c$).
In a ring R, we say that a and b are zero divisors when $a \neq 0, b \neq 0, a \cdot b=0$.

Example:

\mathbb{Z}_{6} we have $2 \cdot 3=0$.
The multiplicative cancellation rule is as follows:
For all $a, b, c \in R$, if $a b=a c$, then either $a=0$ or a is a zero divisor or $b=c$.
An integral domain is a commutative ring with 1 with no zero divisors.
In an integral domain, R, for all $a, b, c \in R$, if $a b=a c$, then either $a=0$ or $b=c$.
Note that units are never zero divisors.
If u is a unit, say $u v=v u=1$, then if we had $u \cdot b=0$, then we would have

$$
0=v \cdot 0=v(u \cdot b)=(v u) \cdot b=1 \cdot b=b
$$

Example:

In \mathbb{Z}_{n}, the units are the elements in $U_{n}=\left\{k \in \mathbb{Z}_{n} \mid \operatorname{gcd}(k, n)=1\right\}$. All other elements are zero divisors. $0 \neq k \in \mathbb{Z}_{n}$, and $\operatorname{gcd}(k, n) \neq 1$, we can choose a prime p with $p \mid k$ and $p \mid n$. Then if we write $n=p \cdot l$, then $k \cdot l=0$.
In $M_{n}(\mathbb{R})$, the units are the elements in

$$
G L_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{det}(A) \neq 0\right\}
$$

and all other non-zero elements are zero divisors since when $\operatorname{det} A=0$, we can choose $0 \neq u \in \mathbb{R}^{n}$ such that $A u=0$ and then $A B=0$ where

$$
B=(u, u, \ldots, u) \quad(\text { or } B(u, 0,0, \ldots, 0))
$$

If \mathbb{F} is a field, all non-zero elements are units and \mathbb{F} has no zero divisors.

If \mathbb{F} is a field and R is a subring of \mathbb{F} with $1 \in R$, then R is an integral domain. Note:
If an element $a \in R$ has a left inverse and a right inverse, then these inverses are equal to each other, so a is invertible.
(If $a b=1$ and $c \cdot a=1$, then $c=c \cdot 1=c(a b)=(c a) b=1 \cdot b=b$)
Using addition and multiplication.
In the ring $C^{0}(\mathbb{R}, \mathbb{R})=\{$ continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}\}$. The units are the functions $f: \mathbb{R} \rightarrow \mathbb{R}^{*}$ (the functions such that $f(x) \neq 0$ for all $x \in R$ and the inverse of f is the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $\left.g(x)=\frac{1}{f(x)}\right)$.

Exercise:

Verify that the zero divisors are the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for some $a<b$ we have $f(x)=0$ for all $x \in[a, b]$.
A picture here.
Definition:
For a ring R with 1 , the characteristic of R is

$$
\operatorname{char}(R)=\left\{\begin{array}{l}
\text { the smallest } n \in \mathbb{Z}^{+} \text {for which } n \cdot 1=0 \\
0 \quad \text { if no such } n \in \mathbb{Z}^{+} \text {exists }
\end{array}\right.
$$

Note:
If $\operatorname{char}(R)=n \in \mathbb{Z}^{+}$, then we have $n \cdot a=0$ for all $a \in R$, because

$$
\begin{aligned}
0 & =n \cdot a=(1+1+\cdots 1) a \\
& =(n \cdot 1) a=0 \cdot a=0
\end{aligned}
$$

Exercise:

Verify that if R has no zero divisors, and if $\operatorname{char}(R)=n \in \mathbb{Z}^{+}$, then n is prime. Example:
char $\mathbb{Z}=\operatorname{char} \mathbb{Q}=$ char $\mathbb{R}=\operatorname{char} \mathbb{C}=0$ and char $\mathbb{Z}_{p}=p$.
Note:
When R is a ring and $S \subseteq R$ is a subset of R, S is a subring when

$$
0 \in S, S \text { closed under }+,-, \text { and } \times
$$

That is, for all $a, b \in S$, we have $a+b \in S,-a \in S$, and $a b \in S$.

26 November 13th

Chapter 9: Ring Homomorphisms and Quotient Rings Definition:

When R and S are rings, a ring homomorphism from R to S is a function $\phi: R \rightarrow S$ such that $\phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$ for all $a, b \in R$.

A ring isomorphism from R to S is a bijective ring homomorphism from R to S. We say that R and S are isomorphic (as rings), and we write $R \cong S$, when there exists a ring isomorphism $\phi: R \rightarrow S$.
Check that when ϕ is a homomorphism from R to S, we have $\phi(0)=0$.
If R has a 1 and ϕ is surjective, then S has a 1 and $\phi(1)=1$.
Examples:
$\phi: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ given by $\phi(k)=(k, 0)$ is a (non-surjective) ring homomorphism and $\phi(1)=(1,0)$ which is not equal to the identity element $(1,1)$ in $\mathbb{Z} \times \mathbb{Z}$.
(Think about $\phi: \mathbb{Z} \rightarrow \mathbb{Z}[i]$ given by $\phi(1)=1=(1,0)$ where $\mathbb{Z}[i]=\{(a, b) \mid a+$ $i b \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.)
Check also that when $K \subseteq R$ is a subring, $\phi(k) \subseteq S$ is a subring and when $L \subseteq S$ is a subring, $\phi^{-1}(L) \subseteq R$ is a subring.
In particular,

$$
\text { Image }(\phi)=\phi(R) \subseteq S \text { is a subring }
$$

and

$$
\operatorname{Ker}(\phi)=\phi^{-1}(0) \subseteq R \text { is a subring }
$$

Check that ϕ is surjective \Longleftrightarrow Image $(\phi)=S$
and ϕ is injective $\Longleftrightarrow \operatorname{Ker} \phi=\{0\}$.
Examples:
The subgroups of \mathbb{Z} are of the form $\langle n\rangle=n \mathbb{Z}$ where $n \in \mathbb{N}$.
These are all subrings. Similarly, the subgroups of \mathbb{Z}_{n} are the groups

$$
\langle d\rangle=d \mathbb{Z}_{n}=\{d k \mid k \in \mathbb{Z}\}
$$

where d is a positive divisor of n. These are also subrings.
In $\mathbb{Z}[i]$, the subgroup generated by $(2,1)=2+i$ is

$$
\langle 2+i\rangle=\{k(2+i) \mid k \in \mathbb{Z}\}
$$

(which is a free abelian group).
Picture here.
Is this a subring of $\mathbb{Z}[i]$?
It is not because, for example

$$
(2+i)(2+i)=3+4 i
$$

The smallest subring of $\mathbb{Z}[i]$ which contains $(2,1)=2+i$ is the ring

$$
\operatorname{Span}\{(2+i),(-1+2 i)\}=\langle 2+i,-1+2 i\rangle=(2+i) \operatorname{Span}\{1+i\}=(2+i) \mathbb{Z}[i]
$$

(which is also a free abelian group under +)
(Verify this!)
Examples:
In \mathbb{Q}, the subgroup generated by $\frac{1}{2}$ is $\left\langle\frac{1}{2}\right\rangle=\frac{1}{2} \mathbb{Z}=\left\{\left.\frac{k}{2} \right\rvert\, k \in \mathbb{Z}\right\}$ and the smallest subring of \mathbb{Q} which contains $\frac{1}{2}$ is

$$
\left\{\left.\frac{k}{2^{n}} \right\rvert\, k \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

(Verify this!)

Quotient Rings

Note: When R is a ring and $A \subseteq R$ is a subring, A is also a subgroup under addition. And + is commutative, so $A \unlhd R$ so we can form the quotient group

$$
R / A=\{r+A \mid r \in R\}
$$

with the operation given by

$$
(r+A)+(s+A)=(r+s)+A
$$

When can we define a product operation by

$$
(r+A) \cdot(s+A)=r s+A
$$

to obtain a ring structure on R / A.

Exercise:

If A is closed under addition by ???
Theorem:
Let R be a ring and let $A \subseteq R$ be a subring. Then we can define a well-defined multiplication operation on the quotient group $R / A=\{r+A \mid r \in R\}$ by the formula $(r+A) \cdot(s+A)=r s+A$ if and only if A is closed under multiplication by elements in R, that $a r \in A$ and $r a \in A$ for all $a \in A$ and $r \in R$.

Proof:

To say that the operation

$$
(r+A)(s+A)=r s+A
$$

is well-defined means that for all $r_{1}, r_{2}, s_{1}, s_{2} \in R$ if $r_{1}+A=r_{2}+A$ (equivalently $r_{2}-r_{1} \in A$) and $s_{1}+A=s_{2}+A$ (equivalently $s_{2}-s_{1} \in A$), then we must have $r_{1} s_{1}+A=r_{2} s_{2}+A$.
(Or equivalently $r_{2} s_{2}-r_{1} s_{1} \in A$)
Suppose the operation is well-defined, let $a \in A$ and $r \in R$. Then taking $r_{1}=r_{2}=r$ and $s_{1}=0$ and $s_{2}=a$ so that $r_{2}-r_{1}=0 \in A$ and $s_{2}-s_{1}=a \in A$, we have $r_{2} s_{2}-r_{1} s_{1} \in A$, that is $r a-r \cdot 0=r a \in A$.
A similar argument shows that $a \cdot r \in A$.
Suppose, conversely that A is closed under elements in R.
Let $r_{1}, r_{2}, s_{1}, s_{2} \in R$, with $r_{2}-r_{1} \in A$ and $s_{2}-s_{1} \in A$, say $r_{2}-r_{1}=a \in A$ and $s_{2}-s_{1}=b \in A$.
Then

$$
\begin{aligned}
r_{2} s_{2}-r_{1} s_{1} & =r_{2} s_{2}-\left(r_{2}-a\right)\left(s_{2}-b\right) \\
& =r_{2} s_{2}-\left(r_{2} s_{2}-r_{2} b-a s_{2}+a b\right) \\
& =r_{2} b+a s_{2}-a b \\
& \in A
\end{aligned}
$$

As long as the operation is closed, then it is well-defined.

27 November 15th

Theorem

If $A \subseteq R$ is a subring, then we can define an operation on $R / A=\{r+A \mid r \in R\}$ by $(r+A)(s+A)=(r \cdot s) A$ for $r, s \in R$ if and only if A is closed under multiplication (on the left and on the right) by elements in R.
In this case, $R \mid A$ is a ring under $(r+A)+(s+A)=(r+s)+A$ and $(r+A) \cdot(s+A)=$ $(r \cdot s)+A$

$$
\begin{aligned}
& (r+A)((s+A)+(t+A)) \\
= & (r+A)((s+t)+A) \\
= & r(s+t)+A \\
= & (r s+r t)+A \\
= & (r s+A)+(r t+A) \\
= & (r+A)(s+A)+(r+A)(t+A)
\end{aligned}
$$

Definition:

An ideal in a ring R is a subring $A \subseteq R$ which is closed under multiplication by elements in R (that is, for all $a \in A, r \in R$, we have $a r \in A$ and $r a \in A$)
When $A \subseteq R$ is an ideal, the quotient $R / A=\{r+A \mid r \in R\}$ is called the quotient ring of R by A.
Check that the zero element in R / A is $0+A=A$.
Check that if R has a 1 , then so does R / A, and the identity in R / A is $1+A$.
Check that if R has a 1 and $r \in R$ is a unit then $r+A$ is a unit in R / A with $(r+A)^{-1}=r^{-1}+A$.
Check that if R is commutative, then so is R / A.
Notation
When R is a ring and $U \subseteq R$ is a subset, we could write

$$
\langle u\rangle=\operatorname{Span}_{\mathbb{Z}} U
$$

to denote the smallest subgroup of R (under +) containing U.
We could write

$$
[U]
$$

to denote the smallest subring of R containing U, and we could write

$$
\langle U\rangle=(U)
$$

to denote the smallest ideal in R containing U.
When R is a subring of S, and $U \subseteq S$ is a subset, we could write

$$
R[U]
$$

to denote the smallest subring of S containing $R \cup U$ (that $R[U]=[R \cup U])$

When F is a subfield of K and $U \subseteq K$, we could write $F(U)$ to denote the smallest subfield of K which contains $F \cup U$.

Examples:

For $\frac{1}{2} \in \mathbb{Q}$, we have

$$
\begin{gathered}
\left\langle\frac{1}{2}\right\rangle=\frac{1}{2} \cdot \mathbb{Z}=\left\{\left.\frac{k}{2} \right\rvert\, k \in \mathbb{Z}\right\} \\
{\left[\frac{1}{2}\right]=\left\{\left.\frac{k}{2^{n}} \right\rvert\, k \in \mathbb{Z}, n \in \mathbb{Z}^{+}\right\}} \\
\left(\frac{1}{2}\right)=\mathbb{Q}
\end{gathered}
$$

More generally, if F is a field then the only ideals in F are $\{0\}$ and \mathbb{F}.

Examples:

For $2+1 \in \mathbb{Z}[i]$,

$$
\begin{gathered}
\langle 2+i\rangle=(2+i) \mathbb{Z}=\{(2+i) k \mid k \in \mathbb{Z}\} \\
{[2+i]=\operatorname{Span}\{2+i,-1+2 i\}} \\
(2+i)=[2+i]=\operatorname{Span}\{2+i,-1+2 i\}
\end{gathered}
$$

Picture here.

Examples:

For $2 \in \mathbb{Z}[i]$

$$
\begin{gathered}
\langle 2 i\rangle=2 i \mathbb{Z} \\
{[2 i]=\operatorname{Span}_{\mathbb{Z}}\{2 i, 4\}}
\end{gathered}
$$

Check if it is closed under multiplication

$$
\begin{aligned}
& (4 k+i 2 l)(4 m+i 2 n) \\
= & (16 k m-4 n l)+i(8 k n+8 l m)
\end{aligned}
$$

$$
(2 i)=\operatorname{Span}_{\mathbb{Z}}\{2 i, 2\}=(2 i) \mathbb{Z}[i]=2(\mathbb{Z}[i])=\{2 k+i 2 l \mid k, l \in \mathbb{Z}\}
$$

Example:

In \mathbb{C},

$$
\begin{gathered}
\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\} \\
\mathbb{Q}[i]=\{a+i b \mid a, b \in \mathbb{Q}\} \\
\mathbb{Q}(i)=\mathbb{Q}[i]
\end{gathered}
$$

(since $\mathbb{Q}[i]$ is already a field, because when $a+i b \neq 0, \frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}$) Theorem (The First Isomorphism Theorem)
When R and S are rings and $\phi: R \rightarrow S$ is a ring homomorphism, and $K=$ $\operatorname{Ker} \phi \subseteq R, K$ is an ideal in R and $R / K \cong \phi(R)$.

Indeed, the map $\Phi: R / K \rightarrow \phi(R)$ given by $\Phi(r+K)=\phi(r)$ is as well defined ring isomorphism.

Proof:

Exercise.
Good practice!!
There are also second, and third Isomorphism Theorems.
Note:
We can perform the following operations on ideals in a ring R :
If $A, B \subseteq R$ are ideals, then so are the each of the followings:

1. $A \cap B$
2. $A+B=\{a+b \mid a \in A, b \in B\}$
3. $A \cdot B=\left\{\sum_{i=1}^{n} a_{i} \cdot b_{i} \mid n \in \mathbb{Z}^{+}\right.$, each $a_{i} \in A$, each $\left.b_{i} \in B\right\} \subseteq A \cap B$
$(a+b) r=a r+b r$
$\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \cdot r=\sum_{i=1}^{n} a_{i}\left(b_{i} r\right)$
In \mathbb{Z}, the subgroups are of the form $\langle n\rangle=n \mathbb{Z}$ with $n \in \mathbb{N}$.
These are also subrings and ideals.
Given $k, l \in \mathbb{Z}($ or in $\mathbb{N})$, what are $\langle k\rangle \cap\langle l\rangle,\langle k\rangle+\langle l\rangle$ and $\langle k\rangle\langle l\rangle$

28 November 18th

Example:

Describe all ring homomorphisms $\phi: \mathbb{Z} \rightarrow R$ where R is a ring.

Solution:

If $\phi: \mathbb{Z} \rightarrow R$ is a ring homomorphism, then ϕ is also a group homomorphism (under +).
So ϕ is determined by the value $\phi(1) \in R$.
If $\phi(1)=a \in R$, then
for $k \in \mathbb{Z}$,

$$
\phi(k \cdot 1)=k \phi(1)=k a
$$

So we have $\phi=\phi_{a}$ where $\phi_{a}: \mathbb{Z} \rightarrow R$ given by $\phi_{a}(k)=k \cdot a$. But also, for ϕ to be a ring homomorphism, we also need

$$
a=\phi(1)=\phi(1 \cdot 1)=\phi(1) \cdot \phi(1)=a^{2}
$$

Thus, we must have $\phi=\phi_{a}$ for some a in the ring with $a^{2}=a$.
An element $a \in R$ with $a^{2}=a$ is called idempotent.
Finally, note that if $a \in R$, with $a^{2}=a$, then the map $\phi_{a}: \mathbb{Z} \rightarrow R$ given by $\phi_{a}(k)=k \cdot a$ is a ring homomorphism because

$$
\phi_{a}(k+l)=(k+l) a=k a+l a=\phi_{a}(k)+\phi_{a}(l)
$$

and

$$
\phi_{a}(k \cdot l)=(k l) a=k l a^{2}=(k a)(l a)=\phi_{a}(k) \phi_{a}(l)
$$

Exercise:

Describe ring homomorphism $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow R, \phi: \mathbb{Z}_{n} \rightarrow R$ and $\phi: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow R$.

Example:

In \mathbb{Z}_{n}, the subgroups are of the form $\langle d\rangle=d \cdot \mathbb{Z}_{n}$ where $d \mid n$, and these subgroups are also subrings and ideals.
So the quotient $\mathbb{Z}_{n} / d \cdot \mathbb{Z}_{n}$ is a ring.
We can prove that when $d \mid n, \mathbb{Z}_{n} / d \cdot \mathbb{Z}_{n} \cong \mathbb{Z}_{d}$ as follows.
Define $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{d}$ by $\phi(k)=k$. (That is $\left.\phi(k \bmod n)=k \bmod d\right)$
Then, ϕ is well-defined because if $k=l \bmod n$, then $k=l \bmod d$.
Also, ϕ is a ring homomorphism and ϕ is surjective.
By the Fisrt Isomorphism Theorem,

$$
\mathbb{Z}_{n} / \operatorname{Ker}(\phi) \cong \mathbb{Z}_{d}
$$

(as rings)
For $k \in \mathbb{Z}$, giving $k \in \mathbb{Z}_{n}$

$$
\begin{aligned}
k \in \operatorname{Ker}(\phi) & \Longleftrightarrow \phi(k)=0 \in \mathbb{Z}_{d} \\
& \Longleftrightarrow k=0 \in \mathbb{Z}_{d} \\
& \Longleftrightarrow k=0 \quad \bmod d \\
& \Longleftrightarrow d \mid k \\
& \Longleftrightarrow k \in d \mathbb{Z}_{n}
\end{aligned}
$$

Example:

Show that $2 \mathbb{Z} \not \neq 3 \mathbb{Z}$ as rings.
Note that $2 \mathbb{Z} \cong 3 \mathbb{Z}$ as groups (both are infinite cyclic groups)
We can see that $2 \mathbb{Z} \neq 3 \mathbb{Z}$ as rings because in $2 \mathbb{Z}$ we have $2+2=4=2 \cdot 2$
But in $3 \mathbb{Z}$, there is no element $a \in 3 \mathbb{Z}$ such that $a+a=a \cdot a$ (that is $2 a=a^{2}$)
Example:
Show that $\mathbb{Q}[x] /\left(x^{2}-2\right) \cong \mathbb{Q}[\sqrt{2}]$.

Solution:

Define $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[\sqrt{2}]$ by $\phi(f)=f(\sqrt{2})$.
Note that when $f \in \mathbb{Q}[x]$, if $f(\sqrt{2})=A+B \sqrt{2}$
then $f(-\sqrt{2})=A-B \sqrt{2}($ with $A, B \in \mathbb{Q})$
So if $f(\sqrt{2})=0$, then $f(-\sqrt{2})=0$.
So $(x-\sqrt{2})$ and $(x+\sqrt{2})$ are factors of $f(x)$ (in $\mathbb{R}[x])$.
So $\left(x^{2}-2\right)=(x-\sqrt{2})(x+\sqrt{2})$ is a factor of $f(x)$ (in $\mathbb{R}[x]$ hence also in $\left.\mathbb{Q}[x]\right)$ If $f(\sqrt{2})=0$, then $\left(x^{2}-2\right)$ is a factor of $f(x)$.
So we can write $f(x)=\left(x^{2}-2\right) g(x)$ for some $g \in \mathbb{Q}[x]$
Then $f(x)=\left(x^{2}-2\right)$ (the ideal geenrated by $\left.x^{2}-2\right)$
Conversely, if $f \in\left(x^{2}-2\right)$, then (since $\left(x^{2}-2\right)=\left\{\left(x^{2}-2\right) g(x) \mid g \in \mathbb{Q}[x]\right\}$), we have $f(x)=\left(x^{2}-2\right) g(x)$ for some $g(x) \in \mathbb{Q}[x]$.

Hence, $f(\sqrt{2})=0$.

Side Note:

More generally, if $a \in R$ and R is commutative with 1 , then $(a)=a \cdot R=$ $\{a r \mid r \in R\}$.
$a r+a s=a(r+s), a r \cdot a s=a(a r s),(a \cdot r) s=a(r s)$
Side Note ends
This shows that $\operatorname{Ker}(\phi)=\{f \in \mathbb{Q}[x] \mid f(\sqrt{2})=0\}=\left(x^{2}-2\right)$
Since $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[\sqrt{2}]$ is a surjective ring homomorphism with $\operatorname{Ker}(\phi)=$ $\left(x^{2}-2\right)$, it follows that

$$
\mathbb{Q}[x] /\left(x^{2}-2\right) \cong \mathbb{Q}[\sqrt{2}]
$$

Example:

Show that $\mathbb{Z}[i] /\langle 2+i\rangle \cong \mathbb{Z}_{5}$

Solution:

$$
\begin{aligned}
\langle 2+i\rangle=(2+i) \mathbb{Z}[i] & =\{(2+i)(k+i l) \mid k, l \in \mathbb{Z}\} \\
& =\{(2+i) k+(-1+2 i) l \mid k, l \in \mathbb{Z}\} \\
& =\operatorname{Span}_{\mathbb{Z}}\{(2+i),(-1+2 i)\}
\end{aligned}
$$

Picture here.
As a group, we saw (informally) that $\mathbb{Z}[i] / \operatorname{Span}\{(2+i),(-1+2 i)\} \cong \mathbb{Z}_{5}$ Cosets, shifting left or right.
$(1,1)+H$ is a generator.
To prove (rigorously) that $\mathbb{Z}[i] /(2+i) \cong \mathbb{Z}_{5}$ as rings, we find a surjective ring homomorphism $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{5}$ with $\operatorname{Ker}(\phi)=\langle 2+i\rangle$
Picture revised here.
Define $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{5}$ by $\phi(a+i b)=2 b-a(\bmod 5)$.
ϕ is clearly well-defined and surjective.
ϕ is a ring homomorphism because for $a, b, c, d \in \mathbb{Z}$,

$$
\begin{aligned}
\phi((a+i b)+(c+i d)) & =\phi((a+c)+i(b+d)) \\
& =2(b+d)-(a+c) \\
& =(2 b-a)+(2 d-c) \\
& =\phi(a+i b)+\phi(c+i d)
\end{aligned}
$$

$$
\begin{aligned}
\phi((a+i b)(c+i d)) & =\phi((a c-b d)+i(a d+b c)) \\
& =2(a d+b c)-(a c-b d) \\
& =2 a d+2 b c-a c+b d
\end{aligned}
$$

$$
\phi(a+i b) \cdot \phi(c+i d)=(2 b-a)(2 d-c)
$$

$$
=
$$

29 November 20th

Example:

Show that $\mathbb{Z}[i] /(2+i) \cong \mathbb{Z}_{5}$ as rings.

Solution:

Define $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{5}$ by $\phi(a+i b)=a-2 b=a+3 b \in \mathbb{Z}_{5}$
Then, ϕ is clearly well-defined and surjective
Note that ϕ is a ring homomorphism because for $a, b, c, d \in \mathbb{Z}$

$$
\begin{aligned}
\phi((a+i b)+(c+i d)) & =\phi((a+c)+i(b+d)) \\
& =(a+c)+3(b+d) \\
& =(a+3 b)+(c+3 d) \\
& =\phi(a+i b)+\phi(c+i d)
\end{aligned}
$$

and

$$
\begin{aligned}
\phi((a+i b) \cdot(c+i d)) & =\phi((a c-b d)+i(a d+b c)) \\
& =(a c-b d)+3(a d+b c) \\
\phi(a+i b) \cdot \phi(c+i d) & =(a+3 b) \cdot(c+3 d) \\
& =a c+3 a d+3 b c+9 b d \\
& =a c+3 a d+3 b c-b d \in \mathbb{Z}_{5}
\end{aligned}
$$

Since $9=-1$
By the First Isomorphism Theorem,

$$
\mathbb{Z}[i] / \operatorname{Ker}(\phi) \cong \mathbb{Z}_{5}
$$

We claim that $\operatorname{Ker} \phi=(2+i)$
(Recall that when R is a commutative ring with 1 and $a \in R$, we have $(a)=$ $a \cdot R=\{a r \mid r \in R\})$
In $\mathbb{Z}[i]$,

$$
\begin{aligned}
(2+i) & =(2+i) \mathbb{Z}[i] \\
& =\{(2+i)(k+i l) \mid k, l \in R\} \\
& =\{(2+i) k+(-1+2 i) l \mid k, l \in \mathbb{Z}\} \\
& =\operatorname{Span}_{\mathbb{Z}}\{2+i,-1+2 i\}
\end{aligned}
$$

If $a+i b \in(2+i)=\operatorname{Span}_{\mathbb{Z}}\{2+i,-1+2 i\}$
say $a+i b=(2+i) k+(-1+2 i) l=(2 k-l)+i(k+2 l)$

$$
\begin{aligned}
\phi(a+i b) & =a+3 b=(2 k-l)+3(k+2 l) \\
& =5 k+5 l=0 \in \mathbb{Z}_{5}
\end{aligned}
$$

$\phi(a+i b)=a+3 b \in \mathbb{Z}_{5}$
Suppose that $\phi(a+i b)=0$, that is $a+3 b=0 \in \mathbb{Z}_{5}$.
We need to show that there exist $k, l \in \mathbb{Z}$ such that

$$
(a+i b)=(2+i) k+(-1+2 i) l=(2 k-l)+i(k+2 l)
$$

We need

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
k \\
l
\end{array}\right]
$$

That is

$$
\begin{aligned}
{\left[\begin{array}{l}
k \\
l
\end{array}\right] } & =\frac{1}{5}\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{c}
(2 a+b) / 5 \\
(-a+2 b) / 5
\end{array}\right]
\end{aligned}
$$

Since $a+3 b=0 \bmod 5$

$$
\begin{aligned}
0 & =-(a+3 b)=(-a-3 b) \\
& =-a+2 b \bmod 5
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =2(a+3 b)=2 a+6 b \\
& =2 a+b \bmod 5
\end{aligned}
$$

So the values k, l above lie in \mathbb{Z}.

Example:

Let R be a commutative ring with 1 .
We define the evaluation map

$$
\phi: R[x] \rightarrow \operatorname{Func}(R, R)=R^{R}
$$

by $\phi(f)=f$
(So ϕ sends the polynomial $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$, where each $a_{k} \in R$, to the function $f: R \rightarrow R$ given by $\left.f(x)=\sum_{k=0}^{n} a_{k} x^{k}\right)$

Example:

For $f(x)=x^{2}+x \in \mathbb{Z}_{2}[x]$, we have $0 \neq f(X) \in \mathbb{Z}_{2}[x]$, but $f(x)=0$ for all $x \in \mathbb{Z}_{2}$.

When R is commutative, ϕ is a ring homomorphism.
(When R is not commutative, its not in $R[x]$

$$
(a+b x)(c+d x)=(a c)+(a d+b c) x+b d x^{2}
$$

but in R^{R}

$$
(a+b x)(c+d x)=a c+a d x+b x c+b x d x
$$

)
When \mathbb{R} is an infinite field (or an infinite integral domain), the evaluation map ϕ is injective.
(For $f \in R[x], \phi(f)=0 \in R^{R}$, so $f(x)=0$ for all $x \in R$)
We must have that $f=0 \in R[x]$ since a non-zero polynomial of degree n can only have at most n roots.)
The image of ϕ in R^{R} is called the ring of polynomial functions on R.
If R is a finite field, then ϕ is not injective (Since $R[x]$ is infinite but R^{R} is finite.)
But, instead, ϕ is surjective:
Indeed, if $R=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then given $b_{1}, b_{2}, \ldots, b_{n} \in R$
We can construct a polynomial function $R \rightarrow R$ with $f\left(a_{i}\right)=b_{i}$ for all i as follows.
For each $1 \leq k \leq n$, let

$$
g_{k}(x)=\frac{\prod_{i \neq k}\left(x-a_{i}\right)}{\prod_{i \neq k}\left(a_{k}-a_{i}\right)}
$$

Thus, $g_{k}\left(a_{l}\right)=\left\{\begin{array}{l}1 \text { if } l=k \\ 0 \text { if } l \neq k\end{array}\right.$

$$
\begin{aligned}
& \sum_{k=1}^{n} b_{k} g_{k}\left(a_{l}\right) \\
= & \sum b_{k} \delta_{k, l} \\
= & b_{l}
\end{aligned}
$$

So we can take

$$
f(x)=\sum_{k=1}^{n} b_{k} g_{k}(x)
$$

We have the evaluation map $\phi: R[x] \rightarrow R^{R}$. The ring of the polynomial maps is

$$
\phi(R[x]) \cong R[x] / \operatorname{Ker}(\phi)
$$

When R is a finite field with $|R|=n$.
Show, as an exercise, that

$$
\operatorname{Ker} \phi=\left(x^{n}-x\right)
$$

(Since $R^{*}=R \backslash\{0\}$ is a group with $n-1$ elements.

So $x^{n-1}=1$ for all $x \in R$ by Lagrange's Theorem.
Hence, $x^{n}=x$ for all $x \in R$.)
In algebraic geometry, we study varieties, when $S \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with \mathbb{F} a field.
The variety of S is

$$
V(S)=\left\{x \in \mathbb{F}^{n} \mid f(x)=0 \text { for all } f \in S\right\}
$$

When $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we write

$$
V(\{f\})=V(f)
$$

Photos Here.
Given $X \subseteq \mathbb{F}^{n}$, the ideal of X is the ideal

$$
I(X)=\left\{f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \mid f(x)=0 \text { for all } x \in X\right\}
$$

The ring of polynomial functions $A(X)$ on a variety X is the ring of functions $f: X \rightarrow \mathbb{R}$ such that there is a polynomial $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ for which $f(x)=$ $p(x)$ for all $x \in X$.
We have the evaluation map

$$
\begin{aligned}
& \phi: \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{F}^{X}=\{f: X \rightarrow F\} \\
& A(X)=\text { Image }(\phi) \\
& \cong \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ker} \phi
\end{aligned}
$$

Show that $\operatorname{Ker} \phi=I(X)$

30 November 22nd

When X is a set and $R=\mathcal{P}(x)=\{A \mid A \subseteq X\}$, we define

$$
\begin{gathered}
A+B=(A \cup B) \backslash(A \cap B) \\
A \cdot B=A \cap B
\end{gathered}
$$

A picture here.
Chapter 10 Factorization in Commutative Rings
Example
Solve $a x+b y=d=\operatorname{gcd}(a, b)$
If p is irreducible, then

$$
p \mid a b \Rightarrow(p \mid a) \text { or } p \mid b
$$

$p_{1} p_{2} \ldots p_{l}=q_{1} q_{2} \ldots q_{m}, p_{1} \mid q_{i}$ for some i.
Definition:

Let R be a commutative ring with 1 . For $a, b \in R$, we say a divides b, or a is a factor of b, or b is a multiple of a, and we write $a \mid b$ when $b=a c$ for some $c \in R$.
For $a, b \in R$, we say that a and b are associates and we write $a \sim b$, when $a \mid b$ and $b \mid a$.
Exercise:
Verify each of the following:

1. $a \mid 0$ for all a, and $0 \mid a \Longleftrightarrow a=0$.
2. $1 \mid a$ for all $a \in R$, and $a \mid 1 \Longleftrightarrow a$ is a unit.
3. $a \mid b \Longleftrightarrow b \in(a) \Longleftrightarrow(b) \subseteq(a)$
4. Association is an equivalence relation.
5. For $a, b \in R, a \sim b \Longleftrightarrow(a)=(b)$
$\Longleftrightarrow a$ and b have the same divisors and the same multiples

Definition:

In a commutative ring, R, with 1 , a principle ideal is the ideal of the form

$$
A=(a)=\{a r \mid r \in R\}
$$

for some $a \in R$.

Exercise:

Show that when R is a commutative ring with 1 and $a, b \in R$, we have $(a)(b)=$ (ab).
Proof:

$$
\begin{aligned}
(a)(b) & =\left\{\sum_{i=1}^{n}\left(a \cdot r_{i}\right)\left(b \cdot s_{i}\right) \mid r_{i}, s_{i} \in R\right\} \\
& =\left\{a b\left(\sum_{i=1}^{n} r_{i} s_{i}\right) \mid r_{i}, s_{i} \in R\right\} \\
& =\{a b \cdot t \mid t \in R\}=(a b)
\end{aligned}
$$

Definition

Let R be a commutative ring with 1 .

1. An element in a ring, $a \in R$, we say a is reducible when a is a non-zero, non-unit, such that $a=b \cdot c$ for some non-units $b, c \in R$.
2. For $a \in R$, we say that a is irreducible when a is a non-zero, non-unit and for all $b, c \in R$, if $a=b \cdot c$, then either b is a unit or c is a unit.
3. For $p \in R$, we say that p is prime when it has the property that for all $a \in R$, if $p \mid a b, p$ is a non-zero, non-unit, then $p \mid a$ or $p \mid b$.
(In integer, irreducible and prime are the same thing.)

Exercise:

Verify the following:
If R is a commutative ring with 1 and $a, b \in R$ with $a \sim b$,

$$
\begin{aligned}
a=0 & \Longleftrightarrow b=0 \\
a \text { is a unit } & \Longleftrightarrow b \text { is a unit } \\
a \text { is reducible } & \Longleftrightarrow b \text { is reducible } \\
a \text { is irreducible } & \Longleftrightarrow b \text { is irreducible } \\
a \text { is a prime } & \Longleftrightarrow b \text { is a prime }
\end{aligned}
$$

If R is an integer domain (So R is commutative with 1 and R has no zero divisors), then every prime in R is irreducible.

Proof:

Let $p \in R$ be prime. (So for all $a, b \in R$, if $p \mid a b$, then $p \mid a$ or $p \mid b$)
Suppose $p=a \cdot b$, where $a, b \in R$. (We need to show that a is a unit or b is a unit)
Since $p=a b$, we have $p \mid a b$, so either $p \mid a$ or $p \mid b$.
Suppose $p \mid a$, say $a=p \cdot u$ where $u \in R$
Then $p=a b=p \cdot u \cdot b$
$\therefore p-p u b=0$
$\therefore p \cdot 1-p u b=0$
$\therefore p(1-u b)=0$
Since R has no zero divisors and $p \neq 0,1-u b=0$.
Thus, $u \cdot b=1$.
So b is a unit.
Similarly, if $p \mid b$, then a is a unit.
Example:
In \mathbb{Z}_{12}, the association classes are $\{0\},\{1,5,7,11\},\{2,10\},\{3,9\},\{4,8\},\{6\}$.
The primes in \mathbb{Z}_{12} are 2 and 3. (and their associates)
Multiplication table here. See picture.
and the reducible elements are

$$
3,4,6
$$

(and associates)
and the irreducible elements are

2

(and associates) (that is 10)
Note that 3 reduces as

$$
3=3 \cdot 9=3 \cdot 3 \cdot 3=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=\ldots
$$

Definition:

A Euclidean domain (or ED) is an integral domain, R, together with a function, $N: R \backslash\{0\} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ (Called the Euclidean norm on R) such that for all $a, b \in R$ with $b \neq 0$)

There exist $q, r \in R$, such that $a=b \cdot q+r$ and either $r=0$ or $N(r)<N(b)$
Examples:
\mathbb{Z} is a ED with Euclidean norm given by $N(k)=|k|$.
When \mathbb{F} is a field, \mathbb{F} is a ED and any function $N: F \backslash\{0\} \rightarrow \mathbb{N}$ is a Euclidean norm.
When \mathbb{F} is a field, the polynomial ring $\mathbb{F}[x]$ is a Euclidean domain with norm given by $N(f)=\operatorname{deg}(f)$.

Definition:

A principal ideal domain or PID is an integral domain in which every ideal is principal.
Every Euclidean domain is a principal ideal domain.

31 November 25th

$a \mid b$ when $b=a c$ for some c.
$a \mid b \Longleftrightarrow b \in(a) \Longleftrightarrow(b) \subseteq(a)$
$a \sim b$ when $a \mid b$ and $b \mid a \Longleftrightarrow(a)=(b)$
We say that a is irreducible when a is a non-zero, non-unit and $a=b \cdot c \Longleftrightarrow$ b is a unit or c is a unit
a is prime when a is a non-zero, non-unit and $a \mid b c \Rightarrow(a \mid b$ or $a \mid c)$
R is a Euclidean Domain when R is an integral domain with a function N : $R\{0\} \rightarrow \mathbb{N}$ (called a Euclidean Norm on R) such that for all $a, b \in R$, with $b \neq 0$. There exists a quotient remainder, $q, r \in R$ such that $a=q b+r$ with $r=0$ or $N(r)<N(b)$.
R is a principal ideal domain when R is an integral domain and every ideal is a principal ideal. (For every ideal A in $R, A=\langle a\rangle$ for some $a \in R$).

Example:

$\mathbb{Z}, \mathbb{Z}_{n}, \mathbb{F}, \mathbb{F}[x]$
$\mathbb{Z}[x]$ is not a P.I.D.
For example,

$$
\langle 2, x\rangle=\left\{f(x)=\sum_{k=0}^{n} c_{k} x^{k} \mid c_{0} \text { is even }\right\}
$$

is not principal.

Example:

$F[x, y]$ is not a PID
For example,

$$
\begin{aligned}
\langle x, y\rangle & =\left\{f(x, y)=\sum c_{k, l} x^{k} y^{l} \mid c_{0,0}=0\right\} \\
& =\{f \in F[x, y] \mid f(0,0)=0\}
\end{aligned}
$$

is not principal.
A unique factorization domain, or a U.F.D, is an integral domain R in which

1. Every non-zero, non-unit $a \in R$ can be written as a product

$$
a=a_{1} a_{2} \ldots a_{l}
$$

where $l \in \mathbb{Z}^{+}$and each a_{i} is irreducible.
2. For $a \in R$, if $a=a_{1} a_{2} \ldots a_{l}=b_{1} b_{2} \ldots b_{m}$ where $l, m \in \mathbb{Z}$ and each a_{i} and b_{j} is irreducible. Then $l=m$, and there is a permutation $\sigma \in S_{l}$ such that $a_{k} \sim b_{\sigma(k)}$ for all k. (Up to order and up to association.)

Example:

\mathbb{Z} is a UFD when \mathbb{F} is a field. $\mathbb{F}[x]$ is a UFD.
$\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3} i \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ is not a UFD.
Example:

$$
(1+\sqrt{3} i)(1-\sqrt{3} i)=4=2 \cdot 2
$$

and $1 \pm \sqrt{3} i$ and 2 are irreducible because if we define $N(u)=\|u\|^{2}$ for $u \in$ $\mathbb{Z}[\sqrt{3} i]$.
So $N(a+b \sqrt{3} i)=a^{2}+3 b^{2} \in \mathbb{N}$
Then $N(u v)=N(u) \cdot N(v)$.
So $u=0 \Longleftrightarrow N(u)=0$
u is a unit $\Longleftrightarrow N(u)=1$.
If w is reducible with $w=u \cdot v$, with u, v non-units. Then $N(w)$ is composite with $N(w)=N(u) N(v)$
So if $1 \pm \sqrt{3}$ or 2 were reduced, they would necessarily factor into elements of norm 2 , and there are no such elements in $\mathbb{Z}[\sqrt{3} i]$.
Also, $1 \pm \sqrt{3} i$ and 2 are not associates since association differ by multiplication by a unit and the only units are ± 1.
Our goal is to show that every Euclidean Domain (ED) is a principal ideal domain (PID), and that every PID is a UFD.
Theorem:
Every Euclidean Domain (ED) is a principal ideal domain (PID).

Proof:

Let R be a Euclidean Domain with $N: R \backslash\{0\} \rightarrow \mathbb{N}$.
Let A be an ideal in R.
If $A=\{0\}$, then $A=(0)$
Suppose $A \neq\{0\}$. Choose an element in the ideal, $0 \neq u \in A$ of smallest possible norm.
(Using Well-Ordering Property).
We claim that the ideal is generated by 1 element, $A=(a)$.
Since $a \in A$, we have $(a) \subseteq A$.
Write $b=q \cdot a+r$ with $r=0$ or $N(r)<N(a)$.
Since $r=b-q \cdot a \in A$ as $b \in A$
We cannot have $N(r)<N(a)$ as we chose a to be the minimum.
So we must have $r=0$.
Thus, $b=q \cdot a \in(a)$.
and so $A \subseteq(a)$.

Example:

Determine whether $\mathbb{Z}\left[\frac{1+\sqrt{19} i}{2}\right]$ is a PID but not a ED. (using any norm).
To prove that every PID is a UFD. We use two lemmas.
Definition:
A ring, R is called Noetherian when it has the property that for any ascending chain of ideals

$$
A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots
$$

in R, there exists $n \in \mathbb{Z}^{+}$such that $A_{k}=A_{n}$ for all $k \geq n$.

Lemma I:

Every PID is Noetherian.
Proof:
Let $a_{1}, a_{2}, a_{3} \in R$ with

$$
\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq\left(a_{3}\right) \subseteq \ldots
$$

Note that $\bigcup_{k=1}^{\infty}\left(a_{k}\right)$ is an ideal.
Choose $a \in R$ so that $\bigcup_{k=1}^{\infty}\left(a_{k}\right)=(a)$.
Since $a \in \bigcup_{k=1}^{\infty}\left(a_{k}\right)$, we have $a \in\left(a_{n}\right)$ for some $n \in \mathbb{Z}$.
Then, for $k \geq n$, we have $\left(a_{k}\right) \subseteq \bigcup_{j=0}^{\infty}\left(a_{j}\right)=(a) \subseteq\left(a_{n}\right) \subseteq\left(a_{k}\right)$
and so $\left(a_{k}\right)=\left(a_{n}\right)$.
Remind: In an integral domain, every prime element is irreducible.
Lemma II:
Let R be a PID. Let $a \in R$.

1. If a is irreducible then (a) is maximal amongst proper ideals. (This means that for $b \in R$, if $(a) \subseteq(b) \subseteq R$. (If and only if statement. Prove the other direction for yourself. Converse might need non-unit and non-zero?) Then, either $(b)=(a)$ or $(b)=R$.)
2. If a is irreducible, then a is prime.

Proof:

Let $a \in R$ be irreducible. Since a is a non-zero, non-unit. $(a) \neq\{0\}$ and $(a) \neq R$.
Let $b \in R$ with $(a) \subseteq(b) \subseteq R$.
Since $(a) \subseteq(b)$, we have $b \mid a$, say $a=b \cdot c$ with $c \in R$.
Since a is irreducible, either b is a unit or c is a unit.
If b is a unit, then $(b)=R$.
If c is a unit, then since $a=b \cdot c$, we have $a \sim b$.
So $(a)=(b)$.
Part 2 as an exercise.

32 November 27th

If R is a Euclidean Domain.
Every Euclidean Domain is a principal ideal domain.
Lemma II

Proof:

Let $a \in R, a$ irreducible.
Let $b, c \in R$ with $a \mid b c$.
Suppose $a \nmid b$, so $b \notin(a)$.
Then $(a) \subset(a)+(b)=\{a r+b s \mid r, s \in R\}$
Since a is irreducible, by Part (1), (a) is maximal amongst proper ideals in R.
So $(a)+(b)=R$.
In particular, $1 \in(a)+(b)=\{a r+b s \mid r, s \in R\}$
Say $1=a r+b s$.
Then $c=c \cdot 1=c(a r+b s)=a \cdot c r+b c \cdot s \in(a)$
As $a \in(a)$ and $b c \in(a)$ since $a \mid b c$.
Since $c \in(a)$, we have $a \mid c$.
Thus, a is prime.
Theorem:
Every PID is a UFD.
Proof:
Let R be a PID. Let $a \in R$ be a non-zero, non-unit.
We claim that a has an irreducible factor in R.
Let $a \in R$ be a non-zero, non-unit.
If a is irreducible, then we are done since $a \mid a$.
Suppose that a is reducible, say $a=a_{1} b_{1}$ where a_{1} and b_{1} are non-units.
Note that $(a) \subset\left(a_{1}\right)$ indeed since $a_{1} \mid a$, we have $(a) \subset\left(a_{1}\right)$ and since b_{1} is not a unit.
a and a_{1} are not associates.
(If we had $a \sim a_{1}$, say $a=a_{1} \cdot u$ where u is a unit, then since $a=a_{1} b_{1}$, so $a_{1} u=a_{1} b_{1}$, so $b_{1}=u$ by cancellation.)
If, a_{1} is irreducible, we are done. (since $a_{1} \mid a$).
Suppose a_{1} is reducible, say that $a_{1}=a_{2} b_{2}$ where a_{2} and b_{2} are non-units.
Note that as above, $\left(a_{1}\right) \subset\left(a_{2}\right)$.
If a_{2} is irreducible, we are done, and otherwise we repeat the procedure above.
The procedure has to end afte finitely many steps because the ring is Noetherian. (by Lemma I).
and

$$
(a) \subset\left(a_{1}\right) \subset\left(a_{2}\right) \subset \ldots
$$

We next claim that we can factor non-zero, non-units completely into irreducibles.
We can write $a=a_{1} a_{2} \ldots a_{l}$ for some $l \in \mathbb{Z}^{+}$and some irreducible elements $a_{i} \in R$.
If a is already irreducible, then there is nothing to prove. (Since $a \mid a$)

Suppose a is reducible, by our previous claim, we can choose an irreducible factor a_{1} of a.
Say $a=a_{1} \cdot b_{1}$.
Note that b_{1} cannot be a unit. (Since if b_{1} was a unit, we could have $a \sim a_{1}$, but a is reducible and a_{1} is not.)
As above, we have

$$
(a) \subset\left(b_{1}\right)
$$

If b_{1} is irreducible, we are done. (Taking $a_{2}=b_{1}$)
Suppose that b_{1} is reducible, choose an irreducible factor, a_{2} of b_{1} and write $b_{1}=a_{2} b_{2}$
As above, b_{2} must be a non-unit.
And we have $\left(b_{1}\right) \subset\left(b_{2}\right)$, if b_{2} is irreducible, we are done. (Taking $a_{3}=b_{2}$ so $a=a_{1} a_{2} a_{3}$)
Otherwise, repeat.
The procedure must end after finitely many steps because R is Noetherian.
Finally, we claim that if $a=a_{1} a_{2} \ldots a_{l}=b_{1} b_{2} \ldots b_{m}$ where $l, m \in \mathbb{Z}^{+}$, and each a_{i} and each b_{j} is irreducible, then $l=m$. and after reordering the b_{j}, if necessary, we have $a_{i}=b_{i}$ for all $1 \leq i \leq l$.
Since a_{1} is irreducible, by Lemma II, it is also prime.
Since $a_{1} \mid a$, that is $a_{1} \mid b_{1} b_{2} \ldots b_{m}$, by the prime property and induction, we must have $a_{i} \mid b_{j}$ for some j.
After reordering, we can say that $a_{1} \mid b_{1}$.
Because b_{1} is irreducible, by the definition of irreducible, we cannot factor this into non-zero, non-units.
The only factors of b_{1} are the units in R and the associates of b_{1} in R.
Since a_{1} is not a unit, and $a_{1} \mid b_{1}, a_{1} \sim b_{1}$, say $b_{1}=a_{1} \cdot u$ where u is a unit in R. Then

$$
\begin{aligned}
a_{1} a_{2} \ldots a_{l} & =b_{1} b_{2} \cdots b_{m} \\
& =a_{1} u \cdot b_{2} \cdot b_{3} \ldots b_{m}
\end{aligned}
$$

So $a_{2} a_{3} \ldots a_{l}=u \cdot b_{2} \cdot b_{3} \ldots b_{m}$
By cancellation, (and $u b_{2}$ is irreducible).
By a suitable induction hypothesis, the proof is done. $l=m$, after reordering, $a_{i} \sim b_{i}$ for $2 \leq i \leq l=m$.

Examples:

To study the problem of whether the ring

$$
\mathbb{Z}[\sqrt{d} i] \text { is a UFD }
$$

where $d \in \mathbb{Z}^{+}$, it is useful to consider the , field norm on $\mathbb{Q}[\sqrt{d} i]$ given by $N(z)=\|z\|^{2}$, that is $N(a+b \sqrt{d} i)=a^{2}+d b^{2} \in \mathbb{Q}$
Note that for $z \in \mathbb{Q}[\sqrt{d} i]$ (or even for $z \in \mathbb{C}, z=0 \Longleftrightarrow N(z)=0$)
For $z, w \in \mathbb{Q}[\sqrt{d} i]$ (or for $z, w \in \mathbb{C}$)

$$
N(z w)=N(z) \cdot N(w)
$$

For $z \in \mathbb{Z}[\sqrt{d} i], N(z) \in \mathbb{N}$.
It follows that for $z \in \mathbb{Z}[\sqrt{d} i], z$ is a unit $\Longleftrightarrow N(z)=1$.
Examples:
We already used that above field norm to show that $\mathbb{Z}[\sqrt{3} i]$ is not a UFD.

$$
(1+\sqrt{3} i)(1-\sqrt{3} i)=4=2 \cdot 2
$$

and $1 \pm \sqrt{3} i$ and 2 are irreducible.
And $1 \pm \sqrt{3} i$ and 2 are not associates.

$$
1 \pm \sqrt{3} i \not \nsim 2
$$

Picture here.
Example:
Show that $\mathbb{Z}[\sqrt{2} i]$ is a ED (hence also a PID and UFD).
And the field norm

$$
N(z)=\|z\|^{2}
$$

is also a Euclidean norm.
Solution:
Let $z, w \in \mathbb{Z}[\sqrt{2} i]$ with $w \neq 0$.

$$
\begin{gathered}
z=w \cdot q+r \\
N(r)<N(w)
\end{gathered}
$$

We have $\frac{z}{w} \in \mathbb{Q}(\sqrt{2} i)$
Say $\frac{z}{w}=x+y \cdot \sqrt{2} i$ with $x, y \in \mathbb{Q}$,
Choose $a, b \in \mathbb{Z}$ with

$$
|x-a| \leq \frac{1}{2}
$$

and

$$
|y-b| \leq \frac{1}{2}
$$

Let $q=a+b \sqrt{2} i$, and $r=z-w q$.
Then

$$
\begin{aligned}
N(r) & =\|r\|^{2}=\|z-w q\|^{2} \\
& =\|w\|^{2}\left\|\frac{z}{w}-q\right\|^{2} \\
& =\|w\|^{2}\|(x-a)+(y-b) \sqrt{2} i\|^{2} \\
& \leq\|w\|^{2}\left(\|x-a\|^{2}+2\|y-b\|\right) \\
& \leq\|w\|^{2}\left(\frac{1}{4}+\frac{2}{4}\right) \\
& =\frac{3}{4}\|w\|^{2} \\
& =\frac{3}{4} N(w)^{2}
\end{aligned}
$$

So $N(r)<N(w)$.
Exercise:
Show that $\mathbb{Z}\left[\frac{1+\sqrt{19}}{2}\right]$ is a PID but not a ED.

33 November 29th

Example: $\mathbb{Z}[x]$ are $\mathbb{F}[x, y]$ are UFD's but not a PID's.
(The proof that $\mathbb{Z}[x]$ and $\mathbb{F}[x, y]$ are UFD's is at the end of the last chapter.)
Examples:
Show that $R=\mathbb{Z}\left[\frac{1+\sqrt{19} i}{2}\right]$ is a PID but not a ED.
Solution:
Suppose for a contradiction, that $R=\mathbb{Z}\left[\frac{1+\sqrt{19} i}{2}\right]$ is a ED with Euclidean norm $N: R \backslash\{0\} \rightarrow \mathbb{N}$.

Remark:

If all the non-zero elements in R were units, then R would be a field, so it would be a ED.
We can draw a picture of the ring.
Picture here.
Check that the only units in R are ± 1
Choose a non-zero, non-unit $a \in R, a \notin\{0, \pm 1\}$ of smallest possible Euclidean norm.
By the definition of a Euclidean norm for all $x \in R$, we can choose $q=q(x), r=$ $r(x) \in R$ such that $x=q \cdot a+r$ with $r=0$ or $N(r)<N(a)$.
Taking $x=2$, we see that there exists

$$
2=q a+r
$$

for some $q \in R$ and some r with $r=0$ or $N(r)<N(a)$
By our choice of a, we must have $r \in\{0, \pm 1\}$, so $q a=2+r$ with $r \in\{0, \pm 1\}$, that is $q \cdot a \in\{1,2,3\}$
Since a divides one of the elements $1,2,3$, we must have

$$
a= \pm 1, \pm 2, \pm 3
$$

and $a \neq \pm 1$ so $a \in\{ \pm 2, \pm 3\}$.
Taking $x=\frac{1+\sqrt{19} i}{2}$, we have

$$
\frac{1+\sqrt{19} i}{2}=q a+r
$$

for some $r \in\{0, \pm 1\}$.
So $q a=\frac{1+\sqrt{19} i}{2}-r$ for some $r \in\{0, \pm 1\}$, that is

$$
q \cdot a \in\left\{\frac{-1+\sqrt{19} i}{2}, \frac{1+\sqrt{19} i}{2}, \frac{3+\sqrt{19} i}{2}\right\}
$$

So a must have a factor of one of the elements

$$
\frac{-1 \pm \sqrt{19} i}{2}, \frac{1+\sqrt{19} i}{2}, \frac{3+\sqrt{19} i}{2}
$$

But $\pm 2, \pm 3$ are not factors (Since $\left\|\frac{-1+\sqrt{19} i}{2}\right\|^{2}=\left\|\frac{1+\sqrt{19}}{2}\right\|^{2}=5$ and $\left\|\frac{3+\sqrt{19} i}{2}\right\|^{2}=$ 7)

This gives the desired contradiction.
We sketch a proof that $R=\mathbb{Z}\left[\frac{1+\sqrt{19} i}{2}\right]$ is a PID.
Let A be any ideal in R.
If $A=\{0\}$, then $A=(0)$.
Suppose $A \neq\{0\}$
Choose a non-zero element $0 \neq a \in A$ of smallest possible field norm $\|a\|^{2}$.
We claim that $A=(a)$.
Since $a \in A$, we have $(a) \subseteq A$.
Let $b \in A$ be arbitrary.
Picture here.
By adding an integer multiple of a and $\frac{1+\sqrt{19} i}{2} a$ to b.
We obtain a point $c \in A$ which lies in the parallelogram with vertices at $0, a \frac{1+\sqrt{19} i}{2} a, \frac{3+\sqrt{19} i}{2} a$.
Also, $c-0, c-a, c-\frac{1+\sqrt{19} i}{2} a$ and $c-\frac{3+\sqrt{19} i}{2} a \in A$.
By our choice of a, if c is not equal to one of these vertices, then

$$
\|c-v\|^{2}<\|a\|^{2}
$$

for all 4 vertices v.
If $c \neq v$ for any of the four v, then c must lie in the shaded region.
Picture here.
Thus, $2 c \in A$ lies in the larger shaded region.
But all the points in the larger shaded region close to one of the points.

$$
1+\sqrt{19} i / 2,3+\sqrt{19} i / 2,5+\sqrt{19} i / 2
$$

to within a distance of $\|a\|$.
Picture here.
Thus, if c is not one of the vertices of the parallelogram, $2 c$ would be equal to one of the point

$$
\frac{1+\sqrt{19} i}{2} a, \frac{3+\sqrt{19} i}{2} a, \frac{5+\sqrt{19} i}{2} a
$$

So that

$$
c=\frac{1+\sqrt{19} i}{4} a, \frac{3+\sqrt{19} i}{4} a, \frac{5+\sqrt{19} i}{4} a
$$

Play with these points to obtain a contradiction.

Note:

To study rings of the form $\mathbb{Z}[\sqrt{d} i]$ with $d \in \mathbb{Z}^{+}$, it is useful to make use of the "field norm".

In $\mathbb{Q}[\sqrt{d} i]$ given by $N(z)=\|z\|^{2}$, that is

$$
N(a+b \sqrt{d} i)=a^{2}+d b^{2}
$$

To study rings $\mathbb{Z}[\sqrt{d}]$ where $d \in \mathbb{Z}^{+}$(with d not a perfect square.)
It is useful to use the "field norm" in $\mathbb{Q}[\sqrt{d}]$ given by $N(a+b \sqrt{d})=a^{2}-d b^{2}$ (or by $N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|$)

34 December 2nd

Remark:

In a ring, R,

$$
\begin{gathered}
a \sim b \Longleftrightarrow(a)=(b) \\
a \mid b \Longleftrightarrow(b) \subseteq(a)
\end{gathered}
$$

m is irreducible, $\Longleftrightarrow(m)$ is maximal amongst proper principal ideals. P is prime $\Longleftrightarrow p|a b \Rightarrow p| a$ or $p \mid b$

$$
(a)(b)=(a b) \subseteq(q) \Rightarrow((a) \subseteq(p) \text { or }(b) \subseteq(p))
$$

Definition:

Let R be a commutative ring with 1 .

1. For ideals A and B in R sometimes we write $A \mid B$ when $B \subseteq A$.
2. For an ideal M in R, we say that M is maximal when it is maximal amongst all proper ideals, that is $M \subset R$ and for all ideals A in R.
If $M \subseteq A \subseteq R$, then either $A=M$ or $A=R$.
3. For a proper ideal P in R, we say that P is prime when $P \subset R$ and for all ideals A, B in R.
If $A B \subseteq P$, then either $A \subseteq P$ or $B \subseteq P$.

Note:

For an ideal P with a commutative ring with $1, P$ is prime ideal if and only if P has the property that for all $a, b \in R$, if $a \cdot b \in P$, then $(a \in P$ or $b \in P)$.
Proof:
Suppose P be a prime ideal in R, let $a, b \in R$ with $a \cdot b \in P$.
Then

$$
(a)(b)=(a b) \subseteq P
$$

(Commutative used here)
So since P is prime, either $(a) \subseteq P$ or $(b) \subseteq P$.
If $(a) \subseteq P$, then $a \in P$ while if $(b) \subseteq P$, then $b \in P$.
Conversely, let P be any proper ideal and suppose that for all $a, b \in R$, if $a b \in P$, then $(a \in P$ or $b \in P)$.
Let A and B be ideals in R with $A B \subseteq P$.

Suppose $A \nsubseteq P$ and choose $a \in A$ with $a \notin P$.
Let $b \in B$ be arbitrary.
Then $a \cdot b \in A B \subseteq P$.
Then either $a \in P$ or $b \in P$.
But $a \notin P$, so $b \in P$.
Thus, $B \subseteq P$ as required.
Theorem:
Let R be a commutative ring with 1 .

1. For an ideal $M \in R, M$ is maximal iff $R \mid M$ is a field.
2. For an ideal P in R, P is prime iff $R \mid P$ is an integral domain.

Proof:

1. Suppose M is maximal.

Since $M \subset R$, we have $a \notin M$.
So $1+M \neq 0+M$ in $R \mid M$.
Since R is commutative, so is $R \mid M$, let $a \in R$ with $a \notin M$ so that $a+M \neq$ $0+M \in R \mid M$.

Since $a \notin M$, we have

$$
M \subset M+(a)=\{m+a r \mid r \in R, m \in M\}
$$

Because M is maximal, we have $M+(a)=R$.
So in particular, $1 \in M+(a)$, so we can say

$$
1=m+a \cdot r
$$

where $m \in M, r \in R$.
Then, we have

$$
a r+M=1+M
$$

That is,

$$
(a+M)(r+M)=1+M
$$

and so $a+M$ is invertible (with inverse $r+M$).
Suppose, conversely, that $R \mid M$ is a field.
Since $0+M \neq 1+M$ in $R \mid M$.
We have $1 \notin M$ so $M \subset R$.
Let A be any ideal in R with $M \subset A$, we need to prove that $A=R$.
Since $M \subset A$, we can choose $a \in A$ with $a \notin M$, then $a+M \neq 0+M \in$ $R \mid M$.
So $a+M$ has an inverse in $R \mid M$.

Say

$$
(a+M)(b+M)=1+M
$$

where $b \in R$.
Then

$$
a b+M=1+M
$$

So $1-a b=m$ for some $m \in M$, hence $1=a b+m \in A$. (Since $a \in A$ so $a \cdot b \in A$ and $m \in M \subseteq A$)
Since $1 \in A$, we have $A=R$, as required.
2. Let P be an ideal in R.

Suppose $R \mid P$ is an integral domain. (No zero divisors).
Since $R \mid P$ is an integral domain,

$$
0+P \neq 1+P
$$

So $1 \notin P$.
Hence $P \subset R$.
Let $a, b \in R$ with $a b \in P$.
Since $a b \in P, a b+P=0+P \in R \mid P$

$$
(a+P)(b+P)=0+P \in R \mid P
$$

Since $R \mid P$ has no zero divisors, we can say that either the element $a+P=$ $0+P$ or $b+P=0+P$ in $R \mid P$.
Hence, either $a \in P$ or $b \in P$.
Thus, P is prime.
Converse is left as a exercise.

Example:

When \mathbb{F} is a field, and $f \in \mathbb{F}[x]$ is irreducible (in the polynomial ring $\mathbb{F}[x]$) $\mathbb{F}[x]$ is a E.D. (Hence a PID)
Since f is irreducible,
(f) is maximal amongst proper principal ideals
Hence among proper ideals, so (f) is a maximal ideal in $\mathbb{F}[x]$.
Thus, $\mathbb{F}[x] /\langle f\rangle$ is a field.
(If a is a root of $f(x)$ in a bigger field, then $\mathbb{F}(a)=\mathbb{F}[a] \cong \mathbb{F}[x] /(a)$)
Example:
Photo here.
$\mathbb{Z}[\sqrt{3} i]$ is not a UFD.
For example,

$$
(1+\sqrt{3} i)(1-\sqrt{3} i)=4=2 \cdot 2
$$

and $1 \pm \sqrt{3} i$ and 2 are irreducible and $1 \pm \sqrt{3} i$ are not associates of 2. But $\mathbb{Z}[\sqrt{3} i] \subseteq \mathbb{Z}\left[\frac{1+\sqrt{3} i}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{3} i}{2}\right]$ is a ED with Euclidean norm

$$
N(z)=\|z\|^{2}
$$

In $\mathbb{Z}[\sqrt{3} i]$, we have $1 \pm \sqrt{3} i \sim 2$.
Example:
$\mathbb{Z}[\sqrt{5} i]$ is not a UFD

$$
(1+\sqrt{5} i)(1-\sqrt{5} i)=6=2 \cdot 3
$$

2 is irreducible. (2) is maximal among principal proper ideals. But

$$
(2) \subset(2,1+\sqrt{5} i)
$$

Verify that $(2,1+\sqrt{5} i)(2,1+\sqrt{5} i)=(2)$.

