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1 September 9th

Defined group, rings and field
1.8 Theorem: (Cancellation)
Proof of 2
Let a, b ∈ G, suppose ab = b, (the case ba = b is similar)
Then

ba = b

ba = be

a = e by (1)

Proof of 3
Let a, b ∈ G
Suppose ab = e.
Then

(ab)b−1 = eb−1

a(bb−1) = eb−1

ae = eb−1

a = b−1

ba = b · b−1

ba = e

Remark the above rules does not hold in rings in general
eg, in Z12, 3 · 2 = 3 · 6 but 2 6= 6.
and 3 · 9 = 3 but 9 6= 1.
eg. Let Rω = {(a1, a2, ...)| each ak ∈ R} and let

R = End(Rω) = Hom(Rω,Rω)

= {linear maps L : Rω → Rω}
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under addition and composition
Let L be given by
L(a1, a2, a3, ...) = (a2, a3, a4, ...)
and let R be given by

R(a1, a2, a3, ...) = (0, a1, a2, a3, ...)

Then LR = I.
but RL 6= I.
Subgroups
eg. In C∗ we have the subgroups
The section below is in notes actually.

Cn = {z ∈ C∗|zn = 1},where n ∈ Z+}
= {ei2πk/n|k ∈ Zn}

C∞ =
⋃
n∈Z+

Cn

= {z ∈ C∗|zn = 1 for some n ∈ Z+}

S′ = {z ∈ C∗||z| = 1}

When R is a commutative ring with 1, we have the following subgroups of the
general linear group

GLn(R) = {A ∈Mn(R)|A is invertible }
= {A ∈Mn(R)|detA is a unit in R}

The special linear group

SLn(R) = {A ∈ GLn(R)|detA = 1}

eg.

O2(R) = {(u, v)|u ∈ R2, v ∈ R2, |u| = 1, |v| = 1, u · v = 0}

=

{[
cos θ − sin θ
sin θ cos θ

]
,

[
cos θ sin θ
sin θ − cos θ

]
|θ ∈ R(or θ ∈ [0, 2r])

}
= {Rθ, Fθ|θ ∈ R}

where Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, Fθ =

[
cos θ sin θ
sin θ − cos θ

]
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2 September 11th raw notes

−−−−−−−−−−−
O2(R) = {Rθ, Fθ|θ ∈ R}
Rθ: rotation Fθ: reflection
Let us find a matrix formula for the rotation in R2 about O = (0, 0) by θ.
(counterclockwise)
See Pictures
Let’s find a matrix formula for the reflection Fθ in the line in R2, through
0 = (0, 0), which makes the angle θ

2 with the positive x-axis.
Solution:
When L has normal unit vector n,‘
When L is the line through o which makes the angle θ

2 with
See Pictures.
−−−−−−−−−−−−−−−−−−−−−−
On(R) = {A ∈Mn(R), ATA = I} ≤ GLn(R)
1.32 Theorem: (The Subgroup Test I)
Theorem: Subgroup Test I
Proof:
In order for H to be subgroup, we need (2) to hold so that ∗ restricts to give a
well-defined operation or H. If H has an identity elements eH , then eH ∗ eH =
EH is inclusive.
Then GH ∗GH inP So eH + eH = eH in G GH = eG by cancellation
If a ∈ H has an inverse in H, say a ∗ b = b ∗ a = e in H.
THen we also have a ∗ b = b ∗ a in G.
So must have b = a−1 in G
Thus, for H to be a subgroup of G, properties (1), (2), and (3) hold.
When (1), (2), and (3) hold, note that ∗ is automatically associative in H
because it is associative in G.
So H is a subgroup of G.
−−−−−−−−−−−−−−−−−−−
Remark, when R is a ring with identity 1R and S is subring of R with identity
1S , it is not always the case that 1S = 1R.
and when a ∈ S has an inverse in S, that inverse is not always an inverse for a
in R.
Examples:
When R = Z12 and S = 3Z12 = {0, 3, 6, 9}. The multiplication operation in S
is given by
A table.
See picture.
We see that 1S = 9, but 1R = 1.
and that the inverse of 3 in S is 3. But 3 has no inverse in Z12

eg.
When R is a commutative ring,
On(R) ≤ GLn(R)
because
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if A ∈ On(R), then ATA = I.
So |A|2 = 1 so |A| is a unit in R.
so A ∈ GLn(R)
This shows that On(R) ⊆ GLn(R).
and
See pictures.
−−−−−−−−−−−−
|G|
For a ∈ G ...

3 September 11th

Let us find a matrix formula for the rotation in R2 about O = (0, 0) by θ
(counterclockwise).

If

[
x
y

]
=

[
r cosψ
r sinψ

]
then the rotation Rθ about 0 by θ is given by

Rθ

[
x
y

]
= Rθ

[
r cosψ
r sinψ

]
=

[
r cos(θ + ψ)
r sin(θ + ψ)

]
=

[
r cos θ cosψ − r sin θ sinψ
r sin θ cosψ + r cos θ sinψ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]

Thus, we have Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Let us find a matrix formula for the reflection Fθ in the line in R2 through
O = (0, 0) which makes the angle θ

2 with the positive x-axis.
Solution:
When L has unit normal vector n. Recall that

Projnx = (x · n) · n

So the reflection in the line L.
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FL(x) = x− 2Projnx

= x− 2(x · n)n

= x− 2(nTx)n

= x− 2nnTx Using matrix multiplication

Thus, FL(x) = (I − 2nnT )x
That, FL = I − 2nnT

(eg. If L has equation ax+ by + c = 0. We can take n = (a,b)T√
(a2+b2)

)

So

FL

(
x
y

)
= (I − 2nnT )

(
x
y

)
=

(
I − 2

a2 + b2

(
a2 ab
ab a2

))(
x
y

)
Side note:

(
a
b

)(
a b

)
=

(
a2 ab
ab a2

)
When L is the line through O which makes the angle θ

2 with the positive x-axis.ı

A unit direction vector for L is u =

(
cos θ2
sin θ

2

)
and a unit normal vector is

n =

(
− sin θ

2

cos θ2

)
So

Fθ = FL = I − 2nnT

= I − 2

(
− sin θ

2

cos θ2

)(
− sin θ

2 cos θ2
)

=

(
cos θ sin θ
sin θ − cos θ

)

On(R) ={A ∈Mn(R)|ATA = I}
≤ GLn(R)

Theorem: (Subgroup Test I)
Let G be a group with identity e = eG and operation ∗, and let H ⊆ G be a
subset.
Then, H ≤ G (that is H is a subgroup of G) if and only if
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1. e ∈ H

2. H is closed under ∗ for all a, b ∈ H, we have a ∗ b ∈ H

3. H is closed under inversion for all a ∈ H, we have a−1 ∈ H.

Proof:
In order for H to be a subgroup, we need (2) to hold so that ∗ restricts to give
a well-defined operation on H.
If H has an identity element eH , then eH ∗ eH = eH in H.
So eH ∗ eH = eH in G
So eH = eG. by cancellation in G.
If a ∈ H has an inverse in H,
say a ∗ b = b ∗ a = e in H.
Then, we also have a ∗ b = b ∗ a in G, so must have b = a−1 in G
Thus, for H to be a subgroup of G properties (1), (2) and (3) hold.
When (1), (2), and (3) hold, note that ∗ is automatically associative in H
because it is associative in G.
So H is a subgroup of G.
Remark:
When R is a ring with identity 1R and S is a subring of R with identity 1S , it
is not always the case that 1S = 1R and when a ∈ S has an inverse in S, that
inverse is not always an inverse for a in R.
For example, when R = Z12, and S = 3Z12 = {0, 3, 6, 9}. The multiplication
operation in S is given by:

0 3 6 9
0 0 0 0 0
3 0 9 6 3
6 0 6 0 6
9 0 3 6 9

We see that 1S = 9 but 1R = 1, and that the inverse of 3 in S is 3 but 3 has no
inverse in Z12.
When R is a commutative ring,
Eg.

On(R) ≤ GLn(R)

because
if A ∈ On(R), then ATA = I
So |A|2 = 1, so |A| is a unit in R. So A ∈ GLn(R).
(This shows that On(R) ⊆ GLn(R) )
and

1. I ∈ On(R), Since
(
IT I = T

)
.
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2. if A,B ∈ On(R), then

(AB)T (AB) = BTATAB

= BT IB

= BTB

= I

3. If A ∈ On(R),
(
ATA = I

)
then

(A−1)TA−1 = (AT )−1A−1

= (AAT )−1 = I−1 = I

because when ATA = I, A is invertible with A−1 = AT .

So AAT = I.

|G| = number of elements in G when G is finite

For a ∈ G =

{
smallest ` ∈ Z+ a` = e

∞ if no such ` exists

4 September 13th

Definition:
Let G be a group. The order of G, denoted by ord(G) or by |G|, is the cardinality
of G:
So we have

|G| =

{
the number of elements in G, if G is finite

∞ , if G is infinite

For a ∈ G , the order of a in G, denoted by orda or ordG(a) or by |a|, is

|a| =


the smallest positive integer n ∈ Z+

if such a positive integer exists,
such that an = e

∞ if no such positive integer exists.

Eg.

|Zn| = n

|Un| = φ(n)

7



where
φ : Z+ → Z+ is the Euler phi function (also called the Euler totient function)
By definition, φ(n) = |Un| = number of {1 ≤ k ≤ n| gcd(k, n) = 1}
eg. When p is a prime

φ(p) = p− 1

because Up = Zp \ {0}, so |Up| = p− 1.
and when k ∈ Z+,
φ(pk) = pk − pk−1
Because Upk = {1, 2, 3, ..., pk = 0} \ {p, 2p, 3p, ..., pk}
We shall prove later that when n =

∏l
i=1 p

ki
i where the pi are distinct primes,

φ(n) =

l∏
i=1

φ(pkii ) =

l∏
i=1

(
pkii − p

ki−1
i

)
Eg. When p and q are distinct primes

φ(pq) = |Upq| = (p− 1)(q − 1)

Eg. Find the order of the group GLn(Zp) where p is prime.
Solution:
We need to count the number of matrices A ∈ GLn(Zp), say A = (u1, u2, ..., un)
with each uk ∈ Znp .
For A to be invertible, the columns need to be linearly independent.
We need the first column u1 to be non-zero. So the number of possible ways to
choose u1 ∈ Znp \ {0} is pn − 1.
Having chosen u1, the second column u2 can be any vector in Znp which is not
in Span{u1} = {tu1|t ∈ Zp}
Since |Span{u1}| = p, there are pn − p choices for u2.
Having chosen u1, u2, we can choose u3 to be any element in Znp \ Span{u1, u2}
and Span{u1, u2} = {t1u1 + t2u2|t1, t2 ∈ Zp}. So that |Span{u1, u2}| = p2.
So the number of possible choices for u3 is pn − p2.
This continues similarly for each column.
Thus, |GLn(Zp)| = (pn − 1)(pn − p)(pn − p2)...(pn − pn−1
If we had s1u1 + s2u2 = t1u1 + t2u2, then s1 = t1 and s2 = t2.
Exercise: Show that |GL2(Z)| =∞
Exercise: Show that if a ∈ G and b ∈ H, and ordG(a) = n and ordH(b) = m
then ordG×H(a, b) = lcm(n,m) = mn

gcd(n,m)

Note: If G is an additive abelian group, and a ∈ G, then

|a| = the smallest n ∈ Z+ such that na = 0 (if such a n ∈ Z+ exists)

Eg. In Z20, find |6| = ord(6)
Additive notation.
Brute force
Solution:
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k 0 1 2 3 4 5 6 7 8 9 10
k · 6 0 6 12 18 4 10 16 2 8 14 0

So |6| = 10 in Z20.
Eg. Find |7| in U100

Solution:
Make a multiplication table and figure out that |7| = 4.

4.1 Chapter 2 Cyclic Groups and Generators

Note that if G is a group and Hk ≤ G for each k ∈ K. Then
⋂
k∈K Hk ≤ G by

the Subgroup Test.

1. e ∈ Hk for all k ∈ K So e ∈
⋂
k∈K Hk

2. If a, b ∈
⋂
k∈K Hk, then for every k ∈ K, a, b ∈ Hk, so ab ∈ Hk Since

ab ∈ Hk for every k ∈ K, we have ab ∈
⋂
k∈K Hk.

3. Similarly, if a ∈
⋂
k∈K Hk, then a−1 ∈

⋂
k∈K Hk

Definition:
Let G be a group and let S ⊆ G be a subset. The subgroup of G generated by
S, denoted by 〈S〉, is the smallest subgroup of G which contains S.
Equivalently, 〈S〉 is the intersection of the set of all subgroups of G which
contains S.
When S is the finite set, we often omit the set brackets and write

〈{a1, a2, . . . , an}〉 = 〈a1, a2, . . . , an〉

A cyclic group is a group G such that G = 〈a〉 for some a ∈ G.
If G is any group and a ∈ G, then 〈a〉 is a cyclic subgroup of G.
Theorem: (Elements in a Cyclic Group)
Let G be a group and let a ∈ G

1. 〈a〉 = {ak|k ∈ Z}

2. If |a| =∞, then for k, l ∈ Z, we have ak = al ⇐⇒ k = l.

(So the elments, ak, k ∈ Z are distinct)

3. If |a| = n, then for k, l ∈ Z, we have ak = al ⇐⇒ k = l mod n

(So we have 〈a〉 = {ak|0 ≤ k ≤ n} = {ak|k ∈ Zn} with the listed elements
distinct)

Proof:

1. 〈a〉 is the smallest subgroup of G which contains a. Since a ∈ 〈a〉, by
closure under the operation and inversion and induction, ak ∈ 〈a〉 for all
k ∈ Z.

So {ak|k ∈ Z} ⊆ 〈a〉.
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5 September 16th

Elements in Cyclic Group (Continue)

1. Also, note that H = {ak|k ∈ Z} is a subgroup of G because

(a) e = a0 ∈ H
(b) For k, l ∈ Z

ak · al = ak+l ∈ H, and

(c) For k ∈ Z,

(ak)−1 = a−k ∈ H

Since a ∈ H and H ≤ G, it follows that 〈a〉 ⊆ H.

2. Suppose |a| = ∞, (this means there is no positive integer r such that
ar = e).

Let k, l ∈ Z,

If k = l, then of course ak = al.

Suppose that ak = al

Suppose k 6= l, say k < l. Then

ak · a−k = al · a−k

e = al−k

This contradicts the fact that there is no r ∈ Z+ such that ar = e.

3. Suppose |a| = n. (So n is the smallest positive integer such that an = e)

If k = l mod n,

say l = k + nq with q ∈ Z
Then

al = ak+nq = ak · anq

= ak · (an)
q

= akeq

= ake = ak

Suppose, conversely, that k, l ∈ Z and ak = al.

Then

ak · a−k = al · a−k

e = al−k

Use the Division Algorithm, to write
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l − k = q · n+ r

with q, r ∈ Z and 0 ≤ r < n.

Then

e = al−k = aq·n+r

= (an)q · ar = e · ar = ar

Thus, we must have r = 0

(Otherwise, r would be a positive integer less than n with ar = e, contra-
dicting the fact that |a| = n ).

Since r = 0, we have
l − k = qn+ r = qn

So l = k + qn, hence l = k mod n.

Corollary:

When G is a group and a ∈ G, we have

|a| = |〈a〉|

Theorem: (Subgroups of Cyclic Groups)
Let G be a group and let a ∈ G.

1. Every subgroup of 〈a〉 is cyclic.

2. If |a| =∞, then for k, l ∈ Z, we have

〈ak〉 = 〈al〉 ⇐⇒ l = ±k

So the distinct subgroups of 〈a〉 are

The trivial group 〈a0〉 = {e}
and the groups 〈ak〉 with k ∈ Z+.

3. If |a| = n, then

for k, l ∈ Z, we have

〈ak〉 = 〈al〉
⇐⇒ gcd(k, n) = gcd(l, n)

and if d = gcd(k, n).
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Then

〈ak〉 = 〈ad〉
= {a0, ad, a2d, . . . , an−d}
= {akd|k ∈ Zn/d}

So the distinct subgroups of 〈a〉 are the groups

〈ad〉 = {akd|k ∈ Zn/d}

where d is a positive divisor of n.

Note that: n− d = (nd − 1)d

(Otherwise, r would be a positive integer less than n with ar = e, contra-
dicting the fact that |a| = n).

Since r = 0, we have

l − k = qn+ r = qn

.

So l = k + qn, hence l = k mod n

Proof:

(a) Let H ≤ 〈a〉 = {ak|k ∈ Z}.
If H = {e}, then H = 〈a0〉 (which is cyclic).

Suppose H 6= {e}
Choose t ∈ Z so e = at ∈ H.

Note that a−t = (at)−1 ∈ H too

So we have a|t| ∈ H with |t| > 0.

Let n be the smallest positive integer such that an ∈ H
We claim that H = 〈an〉.
Since an ∈ H, we have

akn ∈ H

for all k ∈ Z.

So 〈an〉 = {akn|k ∈ Z} ⊆ H
We need to show that

H ⊆ 〈an〉 = {akn|t ∈ Z}

Let l ∈ Z with al ∈ H.

write l = qn+ r with 0 ≤ r < n.
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Then

ar = al−qn

= al · (an)−q

∈ H

Since al ∈ H and an ∈ H.

Since n is the smallest positive integer for which an ∈ H, we must
have r = 0

Thus,

l = qn

al = (an)q ∈ 〈an〉

Thus, H ⊆ 〈an〉
September 18th:

(b) Part 2 as an exercise

(c) Suppose |a| = n,

So 〈a〉 = {a0, a1, a2, . . . , an−1}
Note that if d is a positive divisor of n, then ,

〈a〉 = {a0, ad, a2d, . . . , an−d}

= {akd|k ∈ Zn/d}

By the definition of order:

with |ad| = |〈ad〉| = n
d

It follows from the previous theorem:

We claim that for any integer k ∈ Z, we have

〈ak〉 = 〈ad〉

where d = gcd(k, n)

Let k ∈ Z and let d = gcd(k, n)

Since d|k, it follows that

ak ∈ 〈ad〉 = {aqd|q ∈ Z}

Hence,

〈ak〉 ≤ 〈ad〉

Also, because d = gcd(k, n), we can choose s, t ∈ Z so that d =
ks+ nt.
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It follows that

ad = aks+nt = (ak)s · (an)t

= (ak)s since an = e

Hence, ad ∈ 〈ak〉 = {aks|s ∈ Z}
Hence, 〈ad〉 ≤ 〈ak〉.
Thus, 〈ak〉 = 〈ad〉, where d = gcd(k, n), as claimed.

Now, let k, l ∈ Z.

If gcd(k, n) = gcd(l, n) = d,

then 〈ak〉 = 〈ad〉 = 〈al〉
Suppose that 〈ak〉 = 〈al〉 and let d = gcd(k, n) and c = gcd(l, n).

Then

〈ad〉 = 〈ak〉 = 〈al〉 = 〈ac〉

|〈ad〉| = |〈ac〉|

n

d
=
n

c

d = c

Eg. In the C12 = {z ∈ C∗|z12 = 1} = {1, α, α2, α3, . . . , α11} = 〈a〉
The divisors of 12 are 1, 2, 3, 4, 6, 12.

The distinct subgroups of C12 are:

〈a1〉 = {1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11} = C12

〈α2〉 = {1, α2, α4, α6, α8, α10} = C6

〈α3〉 = {1, α3, α6, α9} = C4

〈α4〉 = {1, α4, α8} = C3

〈α6〉 = {1, α6} = {±1} = C2

〈α12〉 = {1} = C1

Corollary (Orders of Elements in Cyclic Groups):

For a ∈ G,

If |a| =∞, then |a0| = 1
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and |ak| =∞ for 0 6= k ∈ Z.

If |a| = n, then for k ∈ Z, |ak| = n
gcd(k,n) .

Corollary (Generators of Cyclic Groups):

For a ∈ G,

If |a| =∞, then for k ∈ Z

〈ak〉 = 〈a〉 ⇐⇒ k = ±1

and if |a| = n, then for k ∈ Z (or for k ∈ Zn).

〈ak〉 = 〈a〉 ⇐⇒ gcd(k, n) = 1 ⇐⇒ k ∈ Un

C12 = 〈α〉 = 〈α5〉 = 〈α7〉 = 〈α11〉.
α = ei2π/12

Corollary (The Number of Generators in a Cyclic Group):

For a ∈ G,

If |a| =∞, then the number of elements in 〈a〉 which generate 〈a〉 is equal
to 2.

And if |a| = n, then the number of generators of 〈a〉 (the number of
elements b ∈ 〈a〉 such that 〈b〉 = 〈a〉) is equal to φ(n) = |Un|.
Corollary (The Number of Elements of Each Order in a Cyclic
Group):

Let a ∈ G,

If |a| =∞, then in 〈a〉, there is 1 element of order 1. (namely a0 = e).

and if |a| = n, then in 〈a〉, the order of every element in 〈a〉 is a positive
divisor of n and given a positive divisor, d of n, the number of elements
in 〈a〉 of order d is φ(d).

Corollary (Number of Elements of Each Order in a Finite Group):

If G is a finite group, then for each d ∈ Z+.

The number of elements in G of order d is a multiple of φ(d); indeed

it is equal to φ(l) multiplied by the number of distinct cyclic subgroups of
order d in G.

Corollary:

For n ∈ Z+, we have

n =
∑
d|n

φ(d)

\sum d—n : Sum of all positive divisors
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(where the sum is taken over all the positive divisors of n)

Example:

In Z12 = 〈1〉
We have the subgroups with generators bolded.

〈1〉 = {0,1, 2, 3, 4,5, 6,7, 8, 9, 10,11}
〈2〉 = {0,2, 4, 6, 8,10}
〈3〉 = {0,3, 6,9}
〈4〉 = {0,4,8}
〈6〉 = {0,6}
〈12〉 = {0}

6 September 20th

Theorem:
Let G be a group and let S ⊆ G be a subset. Then

〈S〉 = {ak11 a
k2
2 . . . akll |l ∈ N, ai ∈ S, ki ∈ Z}

= {ak11 a
k2
2 . . . akll |l ∈ N, ai ∈ S with ai 6= ai+1, ki ∈ Z with ki 6= 0}

where N = {0, 1, 2, . . . }
and we use the convention that the empty product, (ak11 , . . . , a

kl
l with l = 0). is

the identity e ∈ G
If G is abelian, then

〈S〉 = {ak11 a
k2
2 ...a

kl
l |l ∈ N, ai ∈ S with ai 6= aj when i 6= j, 0 6= ki ∈ Z}

If G is an additive abelian group, then

〈S〉 = {k1a1 + k2a2 + · · ·+ klal|l ∈ N, ai ∈ S with ai 6= aj when i 6= j, 0 6= ki ∈ Z}
= SpanZ(S)

Sketch Proof:
Let H = {ak11 a

k2
2 . . . akll |l ∈ N, ai ∈ S, k ∈ Z}

By the definition of 〈S〉, we have ai ∈ 〈S〉 for all i (Since ai ∈ S) Hence, every
element ak1ak1 . . . akl ∈ H lies in 〈S〉.
By closure of 〈S〉 under the operation and inversion. So we have H ⊆ 〈S〉.
Also, note that H ≤ G because e ∈ H (by taking l = 0) and since the product
of two elements of H lies in H.

(aj11 a
j2
2 . . . ajll )(bk11 b

k2
2 . . . bkmm ) = aj11 a

j2
2 . . . ajll b

k1
1 b

k2
2 . . . bkmm
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and the inverse of each element of H lies in H.

(ak11 a
k2
2 . . . akll )−1 = a−kll . . . a−k22 a−k11

Since S ⊆ H (if a ∈ S then a = a1 ∈ H) and H ≤ G it follows that 〈S〉 ⊆ H.
If ai = ai+1

Then

ak11 . . . akii a
ki+1

i+1 . . . akll = ak11 . . . a
ki+ki+1

i a
ki+2

i+2 . . . akll

If ki = 0, then

ak11 . . . akii a
ki+1

i+1 . . . akll = ak11 . . . a
ki−1

i−1 a
ki+1

i+1 . . . akll

Examples:
In Z2 (or in Q2 or R2),

〈(3, 1), (1, 2)〉 = {s(3, 1) + t(1, 2)|s, t ∈ Z}
= SpanZ{(3, 1), (1, 2)}
= SpanZ{(5, 0), (2,−1)}
= 〈(5, 0), (2,−1)〉

Because
(5, 0) = 2(3, 1)− 1(1, 2) ∈ 〈(3, 1), (1, 2)〉

(2,−1) = (3, 1)− (1, 2) ∈ 〈(3, 1), (1, 2)〉

So
〈(5, 0), (2, 1)〉 ≤ 〈(3, 1), (1, 2)〉

And similarly

(3, 1) = (5, 0)− (2,−1)

(1, 2) = (5, 0)− 2(2,−1)

So 〈(3, 1), (1, 2)〉 ≤ 〈(5, 0), (2,−1)〉
Eg.
Recall that

O2(R) = {Rθ, Fθ|θ ∈ R}.

with RβRα = RβFα = Fβ+α, FβRα = Fβ−α, FβFα = Rβ−α
and for n ∈ Z+

Dn = {Rk, Fk|k ∈ Zn}

where Rk = Rθk , Fk = Fθk with θk = 2πk
n

and we have
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RlRk = Rk+l, RlFk = Fl+k

FlRk = Fl−k, FlFk = Rl−k

with k, l ∈ Zn.
Note that Dn = 〈R1, F0〉.
because Rk = Rk1
and Fk = RkF0 = Rk1F0

Often books write R1 as σ and F0 as τ and I = R0 = e
So Dn = 〈σ, τ〉 with σn = e, τ2 = e

στ = R1F0 = F1

= F0Rn−1

= τσn−1

(Since 0− (n− 1) = 1) in Zn
Remark
If S is a set (with no operation), then the free group on S is the set of expressions

F (S) = {ak11 a
k2
2 . . . akll |l ∈ N, ai ∈ S with ai 6= ai+1, 0 6= ki ∈ Z}

where the operation is given by concatenation followed by grouping and cancel-
lation.
So the product (

aj11 . . . ajll

)
∗
(
bk11 . . . bkmm

)
is given by

(
aj11 . . . a

jl−1

l−1 a
jl
l b

k1
1 b

k2
2 . . . bkmm

)
and the if al = b, we group by replac-

ing ajll b
k1
1 by aji+k1l and then if jl + k1 = 0 then we cancel the form ajl+k1l = a0l

and check to see if al−1 = b2.
Example:
In F (a, b),

(a2b3ab2)(b−2a−1b) = a2b3ab2b−2a−1b

= a2b3ab0a−1b

= a2b3aa−1b

= ab3b

= ab4

Eg.
F (σ, τ) = 〈σ, τ〉 and Dn = 〈σ, τ〉
but in F (σ, τ), σn 6= e, τ2 6= e, and στ 6= τσn−1.
Remark
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When S is a set, the free abelian group on S is

A(S) = {k1a1 + k2a2 + · · ·+ klal|k ∈ N,
the ai are distinct elements in S, 0 6= ki ∈ Z}

If we identify

k1a1 + k2a2 + · · ·+ klal

with the function f : S → Z given by f(ai) = ki and f(x) = 0 when x /∈
{a1, . . . , al}. Then A(S) = ZS = {f : S → Z} under addition of functions

(f + g)(x) = f(x) + g(x) for all x ∈ S

7 September 23th

Definition:
For a group G, the centre of G is the subgroup

Z(G) = {a ∈ G|ab = ba for all b ∈ G}

For a ∈ G, the centralizer of a in G is the subgroup

C(a) = CG(a) = {b ∈ G|ab = ba}

Exercise:
Show that Z(G) and C(a) are subgroups of G.
Chapter 3 The Symmetric Group
Recall that when S is a set, the group of permutations of S, denoted by Perm(S),
is the set of bijective maps f : S → S under composition.
For n ∈ Z+, the nth symmetric group is the group

Sn = Perm({1, 2, . . . , n})

under composition.
Definition:
For α ∈ Sn, we can specify α by giving its table of values as follows.

α =

(
1 2 3 . . . n

α(1) α(2) α(3) . . . α(n)

)
When we can express α in this form, we are using array notation.
Eg.
In array notation,
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S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,(

1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}

If α =

(
1 2 3
1 3 2

)
and β =

(
1 2 3
2 1 3

)
Then,

αβ =

(
1 2 3
3 1 2

)
and

βα =

(
1 2 3
2 3 1

)
6= αβ.

Eg. We can think of Dn as being a subgroup of Sn, because Dn permutes the
elements in Cn = {α0, α1, α2, . . . , αn−1} with α = ei2π/n, and we can consider
that an element of Dn permutes the exponents of the elements αk where k ∈
{1, 2, . . . , n}.
If we consider D4 as a subgroup of S4 in this way.

D4 = {I,R1, R2, R3, F0, F1, F2, F3}

with

R1 =

(
1 2 3 4
2 3 4 1

)

F0 =

(
1 2 3 4
3 2 1 4

)
Definition:
When a1, a2, . . . , al are distinct elements in {1, 2, 3, . . . , n }, we write

α = (a1, a2, a3, . . . , al)

to denote the permutation α ∈ Sn such that
α(a1) = a2, α(a2) = a3, . . . , α(al−1) = al, α(al) = a.
( So α(aj) = aj+1 with j ∈ Zl ).
and α(k) = k for k /∈ {a1, a2, . . . , al}
A permutation α ∈ Sn of the above form is called an l−cycle.
Notes:

1. e = (1) = (2) = · · · = (n)

2. (a1, a2, . . . , an) = (a2, a3, . . . , an, a1) = (a3, a4, . . . , an, a1, a2) = . . .

3. We can write an l−cycle uniquely in the form α = (a1, a2, . . . , al) with
a1 = min(a1, a2, . . . , al).
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4. If α is an l−cycle, then |α| = l.

Definition:
Two cycles α = (a1, a2, . . . , al) and β = (b1, b2, . . . , bm) in Sn are called disjoint
when {a1, a2, . . . , al} ∩ {b1, b2, . . . , bn} = ∅.
(So no ai is equal to any bj).
More generally, the cycles

α1 = (a1,1, a1,2, . . . , a1,l1)

α2 = (a2,1, a2,2, . . . , a2,l2)

. . .

αm = (am,1, am,2, . . . , am,lm)

are disjoint when no ai,j is equal to and ak,l unless i = k and j = l.
Eg.
In S8, we have

(25134)(72651)(31826) = (18624)(375)

Theorem (Cycle Notation)
Every α ∈ Sn can be written as a product of disjoint cycles. Indeed, every
e 6= α ∈ Sn can be written uniquely as a product of disjoint cycles in the form

α = α1α2 . . . αm

with

αk = (ak,1, ak,2, . . . , ak,lk)

where m ≥ 1, each lk ≥ 2, for each k, ak,1 = min{aki|1 ≤ i ≤ lk} and a11 <
a21 < . . . am1.
Let e 6= α ∈ Sn
Proof:
For α to be in the given unique form, we need to choose a11 to be the smallest
k ∈ {1, 2, . . . , n} such that α(k) 6= k. Having chosen a11, we must choose

a12 = α(a11), a13 = α(a12) = α2(a11), α14 = α(a13) = α3(a11)

and so on.
Eventually, we must reach a positive integer l such that αl(a11) = a11
and we must choose l to be the smallest such l.
This uniquely determines the first cycle α1 = (a1,1, a1,2, . . . , a1,l1).
If α = α1, we are done.
Otherwise, we must choose a2,1 to be the smallest k ∈ {1, 2, . . . , n}\{a1,1, a1,2, . . . , a1,l1}
with α(k) 6= k.
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8 September 25th

Disjoint cycles commute.
We must have

a2,2 = α(a2,1), a2,3 = α(a2,2) = α2(a2,1) . . .

and l2 must be the smallest positive integer such that αl2(a2,1) = a2,1
Then α2 = (a2,1, a2,2, . . . , a2,l2)
Note that α1 and α2 are disjoint because if we have

αl(a1,1) = αj(a2,1) for somei, j

Hence,

a2,1 = α−j
(
αj(a2,1)

)
= α−j

(
αi(a1,1)

)
= αi−j(a1,1) ∈ {a1,1, a1,2, . . . a1,l1}

But we chose a2,1 /∈ {a1,1, a1,2, . . . , a1,l1}
If α = α1α2, we are done and otherwise we repeat the above procedure.
Note:
Disjoint cycles commute indeed if α = (a1, a2, . . . , al) and β = (b1, b2, . . . , bm)
are disjoint cycles, then
for k ∈ {1, 2, . . . , n}
If k = ai, then

α(β(k)) = β(α(k)) = ai+1

If k = bj , then

α(β(k)) = β(α(k)) = bj+1

and if k ∈ {a1, . . . , al} ∪ {b1, . . . , bm}
Then, α (β(k)) = β (α (k)) = k
Note:
If α = α1α2 . . . αm where the αk are disjoint cycles with |αk| = lk, then

|α| = lcm (|α1|, . . . , |αm|)
= lcm (l1, . . . , lm)

Proof :
Let p ∈ Z+. If p is a common multiple of l1, . . . , lm, then αpk = e for all k.
(when |a| = l, we have ak = e ⇐⇒ l|k)
So
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αp = (α1α2 . . . αm)
p

= αp1α
p
2 . . . α

p
m Since disjoint cycles commute

= e

If p is not a common multiple of l1, . . . , lm, then we can choose k so that p is
not a multiple of lk.
Write p = q · lk + r with 0 ≤ r ≤ lk.
Then for αk = (ak,1ak,2 . . . ak,l2)
We have αpk (ak,1) = αrk(ak,1) = ak,1+r 6= ak,1.
So,

αp (ak,1)

= (α1 . . . αm)
p

(ak,1)

=αpk

∏
i6=k

αpi

 (ak,1)

=αpk (ak,1)

6=ak,1
Hence, α 6= e.
Eg. Find the number of elements of each order in S6.
Solution:

Form of α # of such α |α|
(a b c d e f)

(
6
6

)
5! = 120 6

(a b c d e)
(
6
5

)
4! = 144 5

(a b c d)
(
6
4

)
3! = 90 4

(a b c d) (e f)
(
6
4

)(
2
3

)
3!1! = 90 4

(a b c)
(
6
3

)
2! = 40 3

(a b c) (d e f)
(
6
6

)
· 5 · 4 · 1 · 2 · 1 = 40 3

(a b c) (d e)
(
6
3

)(
3
2

)
2! = 120 6

(a b)
(
6
2

)
= 15 2

(a b) (c d)
(
6
4

)
1 · 3 · 1 · 1 = 45 2

(a b) (c d) (e f)
(
6
6

)
1 · 5 · 1 · 3 = 15 2

(a) 1 1
Total 720

|α| # of such α
6 240
5 144
4 180
3 80
2 75
1 1
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9 September 27th

Theorem: (Parity of Permutations)
Let n ≥ 2 and consider Sn,

1. Every permutation in Sn can be written as a product of 2-cycles.

2. If e ∈ Sn is equal to a product of l 2-cycles, e = (a1 b1) (a2 b2) . . . (al bl)
with ai 6= bi, then l is even.

3. If α ∈ Sn is a product of l 2-cycles and a product of m 2-cycles, then
m = l mod 2.

Proof:

1. We already know every α ∈ Sn can be written as a product of (disjoint)
cycles, and for α = (a1 a2 . . . al), note that

α = (a1 al) (a1 al−1) . . . (a1 a3) (a1 a2)

2. Note that we cannot write e as a 2-cycle. (e 6= (a, b) where a 6= b) and we
can write e as a product of 2 2-cycles e = (1 2) (1 2)

Let l ≥ 3. Suppose, inductively, for all m < l, if e can be written as a
product of m 2-cycles, then m must be even.

Suppose e can be written as a product of l 2-cycles,

say e = (a1 b1) (a2 b2) . . . (al bl) where ai 6= bi and let a = a1.

Of all the ways in which we can write e as a product of l 2-cycles, e =
(x1 y1) (x2 y2) . . . (xl yl) , xi 6= yi in which a = xi for some.

Choose one such way

e = (r1 s1) (r2 s2) . . . (rl sl)

with ri 6= si,

a = rk for some k

ri 6= a and si 6= a for i < k with k chosen to be as large as possible.

Note that we cannot have k 6= l because a product of 2-cycles (x1 y1) (x2 y2) . . . (xk yk)
with xk = a and xi, yi 6= a for i < k is not equal to e since it sends yk to
xk = a 6= yk.

Note that (rk sk) (rk+1 sk+1) must be of one of the following forms (after
possibly interchanging rk+1 and sk+1)

(a b) (a b) (a b) (a c)
(a b) (b c) (a b) (c d)
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where a, b, c, d are distinct elements in {1, 2, . . . , n}.
But notice that

(a b) (a c) = (a c b) = (b c) (a b)

(a b) (b c) = (a b c) = (b c) (a c)

(a b) (c d) = (c d) (a b)

which would contradict our choice of k.

Thus, (rk sk) (rk+1 sk+1) is of the form (a b) (a b)

After cancelling these two 2-cycles, we can rewrite e as a product of (l − 2)
2-cycles.

By the induction hypothesis, l − 2 is even, so l is even.

3. Let α ∈ Sn,

Suppose α = (a1 b1) (a2 b2) . . . (al bl) , ai 6= bi.

and α = (c1 d1) (c2 d2) . . . (cm dm) , ci 6= di.

Then e = αα−1 = (a1 b1) . . . (al bl) (cm dm) . . . (c2 d2) (c1 d1)

By part 2, l +m is even, so m = l mod 2.

Definition:
For α ∈ Sn with n ≥ 2, we say that α is even, and we write (−1)

α
= 1, when

α can be written as a product of an even number of 2-cycles, and we say that
α is odd, and we write (−1)

α
= −1, when α can be written as a product of an

odd number of 2-cycles.
(−1)

α
is called the parity of α.

Note:
In Sn with n ≥ 2, we have

1. (−1)
e

= 1

2. If α is an l-cycle, then (−1)
α

= (−1)
l−1

.

3. For all α, β ∈ Sn, (−1)
αβ

= (−1)
α

(−1)β.

4. For α ∈ Sn, (−1)
α−1

= (−1)
α

Definition:
The nth alternating group is the subgroup

An = {α ∈ Sn|(−1)α = 1} ≤ Sn

Eg.
Also, recall that when n ≥ 3, we can consider Dn as a subgroup of Sn.
Using cycle notation,
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S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
A3 = {(1), (1 2 3), (1 3 2)}
D3 = {R0, R1, R2, F0, F1, F2}

= {(1) , (1 2 3) , (1 3 2) (1 2) , (1 3) , (2 3)}
= S3

S4 = {(1) , (1 2) , (1 3) , (1 4) , (2 3) , (2 4) , (1 2 3) , (1 3 2) , (1 2 4) ,

(1 4 2) , (1 3 4) , (1 4 3) , (2 3 4) , (2 4 3) , (1 2 3 4) , (1 2 4 3) ,

(1 3 2 4) , (1 3 4 2) , (1 4 2 3) , (1 4 3 2) , (1 2) (3 4) ,

(1 3) (2 4) , (1 4) (2 3)}
A4 = {(1) , (1 2 3) , (1 3 2) , (1 2 4) , (1 4 2) , (1 3 4) , (1 4 3) , (2 3 4) ,

(2 4 3) , (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3)}
D4 = {I,R1, R2, R3, F0, F1, F2, F3}

with for example, R1 = (1 2 3 4) , R2 = R2
1 = (1 3) (2 4) , F0 = (1 3) , F1 =

(1 4) (2 3) etc.
Example:

Sn = 〈(1 2) , (1 3) , (1 4) , . . . (1 n)

= 〈(1 2) , (2 3) , (3 4) , . . . , (n− 1, n)〉
= 〈(1 2) , (1 2 3 . . . n)〉.

Example:
Show that An is generated by 3-cycles. (a b c).

An = 〈(1 2 3) , (1 2 4) , (1 2 5) , . . . , (1 2 n)〉

10 September 30th

Exercise:
If a ∈ G and b ∈ H and |a| and |b| are finite, then in G×H, we have |(a, b)| =
lcm (|a|, |b|)

Z9 × Z15

Generators for Sn and An:
Since every α ∈ Sn is a product of 2-cycles,

Sn = 〈(a b) |a, b ∈ {1, . . . , n}, a < b〉
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Since when a, b are distinct

(a b) = (1 a) (1 b) (1 a)

It follows that Sn = 〈(1 2) , (1 3) , (1 4) , . . . , (1 n)〉.
Also, note that for k 6= 1,

(1 k) = (1 2) (2 3) (3 4) . . . (k − 2 k − 1) (k − 1 k)

(k − 2 k − 1) . . . (3 4) (2 3) (1 2)

and so we also have

Sn = 〈(1 2) , (2 3) , (3 4) , . . . , (n− 1, n)〉

Also note that

Sn = 〈(1 2) , (1 2 3 . . . n)〉

because

(k k + 1) = (1 2 . . . n)
k−1

(1 2) (1 2 . . . n)
−(k−1)

If we think of Dn as a subgroup of Sn,

Dn = 〈R1, F0〉
= 〈(1 2 3 . . . n) , (1 n− 1) (2 n− 2) . . . (k n− k)

where k =
⌊
n−1
2

⌋
Since every α ∈ An is a product of an even number of 2-cycles, An is generated
by all products of pairs of 2-cycles.

An = 〈(a b) (c d) |a, b, c, d ∈ {1, . . . , n}, a 6= b, c 6= d〉

Also, we claim that An is generated by 3-cycles,

An = 〈(a b c) |a, b, c are distinct elements of {1, 2, . . . , n}〉

Proof:
Every product of a pair of 2-cycles is of one of the forms,

(a b) (a b) , (a b) (a c) , (a b) (b c) , (a b) (c d)

with a, b, c and d distinct, and we have
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(a b) (a b) = e = (a b c)
3

= (a b c)
0

(a b) (a c) = (a c b)

(a b) (b c) = (a b c)

(a b) (c d) = (a d c) (a b c)

Exercise:
Show that An = 〈(1 2 3) , (1 2 4) , (1 2 5) , . . . , (1 2 n)〉
Equivalence Classes
Definition:
An equivalence relation on a set S is a binary relation ∼ on S such that

1. For all a ∈ S, a ∼ a.

2. For all a, b ∈ S, if a ∼ b, then b ∼ a.

3. For all a, b, c ∈ S, if a ∼ b and b ∼ c, then a ∼ c.

When ∼ is an equivalence relation on S and a ∈ S, the equivalence class of a is
the set [a] = {x ∈ S|x ∼ a}
Note that for a, b ∈ S,

a ∼ b ⇐⇒ b ∈ [a] ⇐⇒ [a] = [b]

and when a 6∼ b, (so [a] 6= [b]), we have [a] ∩ [b] = ∅.
Sketch Proof:
Suppose a ∼ b, then b ∼ a by (2), so b ∈ [a].
If x ∈ [a], then x ∼ a.
Then since x ∼ a and a ∼ b, we have x ∼ b by (3), hence x ∈ [b].
Thus, [a] ⊆ [b].
If x ∈ [b], then x ∼ b.
Since a ∼ b, we have b ∼ a by (2).
Since x ∼ b and b ∼ a, we have x ∼ a by (3).
Hence, x ∈ [a].
Thus, [b] ⊆ [a].
Thus proves part of the 1st statement.
Suppose a 6∼ b, (so [a] 6= [b]).
Suppose, for a contradiction, that [a] ∩ [b] 6= ∅,
Choose c ∈ [a] ∩ [b].
Since c ∈ [a], we have [c] = [a].
Since c ∈ [b], we have [c] = [b].
Thus, [a] = [c] = [b], (giving a contradiction).
Example:
When n ∈ Z+, we can define a relation ∼ on Z by a ∼ b ⇐⇒ a = b mod n.
Then, ∼ is an equivalence relation,
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Zn = {[a]|a ∈ Z}

Definition:
When ∼ is an equivalence relation on a set S, the quotient of S by ∼ denoted
by S/ ∼, is the set of equivalence classes.

S/ ∼= {[a]|a ∈ S}

Definition:
For a group G and an element a ∈ G, the left multiplication by a is the map
La : G→ G given by La(x) = ax.
and the right multiplication by a is the map Ra : G→ G given by Ra(x) = xa.
The conjugation by a is the map Ca : G→ G given by Ca(x) = axa−1.
Also, for a, b ∈ G, we say that a and b are conjugate in G, and we write a ∼ b,
when b = Cg(a) = gag−1 for some g ∈ G.
Note that every conjugacy is an equivalence relation on G.

1. a ∼ a since Ce(a) = eae−1 = a

2. If a ∼ b, say b = Cg(a) = gag−1, then a = g−1bg = Cg−1(b) and

3. If a ∼ b, say b = gag−1, and if b ∼ c, say c = hbh−1, then

c = hbh−1 = hgag−1h−1

= (hg)a(hg)−1

= Chg(a)

So c ∼ a.
The equivalence class of a ∈ G under conjugacy is called the conjugacy class of
a in G, and it is denoted by Cl(a), so

Cl(a) = [a] = {x ∈ G|x = gag−1 for some g ∈ G}

11 October 2nd

Conjugacy Classes
For a, b ∈ G, we say a is conjugate to b, and write a ∼ b, when b = Cg(a) =
gag−1 for some g ∈ G.
This is an equivalence relation, the equivalence class of a ∈ G is called the
conjugacy class and is denoted by Cl(a), so

Cl(a) = [a] = {x ∈ G|x = gag−1 for some g ∈ G}

G is the disjoint union of the conjugacy classes.
Theorem: Conjugacy Classes in Sn
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For α, β ∈ Sn, we have α ∼ β and if and only if when α and β are written in
cycle notation, they have the same number of cycles of each length.
Proof:
When α is written in cycle notation as

α = (a11 a12 . . . a1l1) (a21 a22 . . . a2l2) . . . (am1 am2 . . . amlm)

For all σ ∈ Sn, we have

σασ−1 = (σ(a11), σ (a12) , . . . , σ (a1,l1)) . . . (σ(am1), . . . , σ (am,lm))

(On the right, σ (aij) is sent to σ (ai,j+1), and on the left, σ(aij) is sent by σ−1

to aij , which is sent by α to α(aij) = ai,j+1, which is sent by σ to σ(ai,j+1))
Eg.
When we listed the possible ”types” or ”forms” for elements in S6 as
(a b c d e f) , (a b c d e) , (a b c d) (e f) , (a b c d) ,
(a b c) (d e f) , (a b c) (d e) , (a b) (c d) (e f) , (a b) (c d) , (a b) , (a).
We were actually listing the conjugacy classes in S6.
Chapter 4: Group Homomorphisms
Definition:
Let G and H be groups.
A (group) homomorphism from G to H is a function φ = G→ H such that

φ(a · b) = φ(a) · φ(b)

for all a, b ∈ G
A bijective (group) homomorphism φ : G→ H is called a (group) isomorphism.
We say that G and H are isomorphic, and we write G ∼= H, when there exists
an isomorphism φ : G→ H.
An endomorphism of G is a homomorphism from G to G and an automorphism
of G is an isomorphism from G to G.
We write

Iso(G,H) = {φ : G→ H|φ is an isomorphism}
Hom(G,H) = {φ : G→ H|φ is an homomorphism}

End(G) = {φ : G→ G|φ is an endomorphism}
Aut(G) = {φ : G→ G|φ is an automorphism}

Note:
Let φ : G→ H be a homomorphism of groups.

1. φ(e) = e

2. φ(a−1) = φ(a)−1

3. φ(ak) = φ(a)k for k ∈ Z
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Proof:

1. φ(e) = φ(e · e) = φ(e) · φ(e)

∴ φ(e) = e by cancellation.

2. φ(a) · φ(a−1) = φ(a · a−1) = φ(e) = e

∴ φ(a)−1 = φ(a−1) by cancellation.

3. Follows from (b) and from induction.

Question: How is |a| related to |φ(a)|?
Note:

1. I : G→ G given by I(x) = x is a group homomorphism.

2. If φ : G → H and ψ : H → K are group homomorphisms, then so is
ψ ◦ φ : G→ K

3. If φ : G → H is an isomorphism (an invertible homomorphism), then
φ−1 : H → G.

Proof (3)
Suppose φ : G→ H is an isomorphism and let ψ = φ−1 : H → G. Let c, d ∈ H
Let a = ψ(c) and b = ψ(d) so that c = φ(a), d = φ(b).
Then

ψ(cd) = ψ (φ(a)φ(b))

= ψ(φ(a · b)) Since ψ is a homomorphism

= a · b ( since ψ = φ−1 )

= ψ(c) · ψ(d)

Corollary:
Isomorphism of groups is an equivalence relation (on the class of all groups).
{x|F (x) is true} is a ”class”.
If A is a set, then

{x ∈ A|F (x) is true}

is a set.
For all groups G,H,K

1. G ∼= G.

2. If G ∼= H, then H ∼= G.

3. If G ∼= H and H ∼= K, then G ∼= K.
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Note:
Let φ : G→ H be a homomorphism of groups. Then

1. If K ≤ G, then φ(K) = {φ(a)|a ∈ K} ≤ H, in particular, Im(φ) =
Range(φ) = φ(G) ≤ H.

2. If L ≤ H, then φ−1(L) = {a ∈ G|φ(a) ∈ L} ≤ G, in particular, Ker(φ) =
φ−1(e) ≤ G.

Proof:
Suppose K ≤ G
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Definition:
Let G and H be groups.
A group homomorphism from G to H is a function φ : G → H such that
φ(ab) = φ(a)φ(b) for all a, b ∈ G.
A group isomorphism from G to H is a bijective group homomorphism from G
to H.
Note:
For a homomorphism φ : G→ H

1. φ(e) = e

2. φ(a−1) = φ(a)−1

3. φ(ak) = φ(a)k for all k ∈ Z

If |φ(a)| = n in H, then φ(an) = φ(a)n = e
So |a| is a multiple of n = |φ(a)|
Note:
I : G→ G is an isomorphism if φ : G→ H and ψ : H → K are homomorphisms,
then so is ψ ◦ φ : G→ K.
If φ : G→ H is an isomorphism, then φ−1 : H → G is too.
Corollary:
Isomorphism is an equivalence relation (on the class of groups)
Definition:
When φ : G → H is a group homomorphism, the image of φ is denoted by
Im(φ), so

Im(φ) = Range(φ) = φ(G) = {φ(a)|a ∈ G}

and the kernel of φ is the set

Ker(φ) = φ−1(e) = {a ∈ G|φ(a) = e}

Side Note: Relation to Matrix
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A ∈Mn×m(R), A : Rm → Rn.

Ker(A) = Null(A)

= A−1(0) = {x ∈ Rm|Ax = 0}

In GLn(C),

A ∼ B ⇐⇒ B : PAP−1

for some P ∈ GLn(C).
Note:
Let φ : G→ H be a homomorphism.

1. If K ≤ G, then φ(K) ≤ H.

In particular, Im(φ) = φ(G) ≤ H.

2. If L ≤ H, then φ−1(L) ≤ G.

In particular, Ker(φ) ≤ G.

Proof:

1. Suppose K ≤ G
Then φ(K) ≤ H because

eH = φ(eG) ∈ φ(K)

since eG ∈ K
and if a, b ∈ K. So φ(a), φ(b) ∈ φ(K),

then φ(a) · φ(b) = φ(ab) ∈ φ(K) since ab ∈ K
and if a ∈ K, so φ(a) ∈ φ(K), then

φ(a)−1 = φ(a−1) ∈ φ(K)

since a−1 ∈ K.

2. Exercise.

Examples of Homomorphisms
The map φ : R → R+ given by φ(t) = et is a homomorphism, because for
s, t ∈ R

φ(s+ t) = es+t = es · et

= φ(s) · φ(t)
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We have Kerφ = φ−1(1) = {0}
The map

φ : R→ S1 = {z ∈ C∗||z| = 1}

given by φ(t) = ei2πt

is a homomorphism because for s, t ∈ R,

φ(s+ t) = ei2π(s+t)

= ei2πs · ei2πt

= φ(s) · φ(t)

We have Ker(φ) = φ−1(1) = Z
The map φ : GLn(R)→ R∗ given by φ(A) = det(A)
Missing parts . . .
Examples:
Let G be any group, describe Hom(Z, G)
Solution:
Let a ∈ G, define φa : Z→ G given by φa(K) = ak.
Then φa is a homomrophism, because

φa(k + l) = ak+l = ak · al

= φa(k) · φa(l)

Note:
Every homomorphism φ : Z→ G is equal to one of the homomorphisms φa, a ∈
G.
Indeed, given a homomorphism φ : Z→ G, let a = φ(1) and then for all k ∈ Z

φ(k) = φ(k · 1) = φ(1)k = ak = φa(k)

So we have φ = φa
Thus, Hom(Z, G) = {φa|a ∈ G}
Exercise:
Let G be any group, describe Hom(Zn, G)
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Note:
For a group homomorphism, φ : G→ H, note that

φ is injective ⇐⇒ Ker(φ) = {e}

Proof:
If φ is injective, then since φ(e) = e. It follows that
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φ(a) = eH ⇐⇒ a = eG

So

Ker(φ) = φ−1(eH)

= {a ∈ G|φ(a) = eH}
= {eG}

Suppose Ker(φ) = {e}.
Let a, b ∈ G and suppose φ(a) = φ(b).
Then

φ(ab−1) = φ(a)φ(b)−1 = φ(a)φ(a)−1

= eH

So ab−1 ∈ Ker(φ) = {eG}
Hence ab−1 = e
∴ a = b
Examples of Isomorphisms
Examples:

1. The map φ : R → R+ given by φ(x) = ex is a group isomorphism with
inverse ψ : R+ → R given by ψ(y) = log(y) = ln(y).

2. The map φ : SO2(R)→ S1 given by φ(Rθ) = eiθ is a group isomorphism.

3. Show that U12
∼= Z2 × Z2

Solution:
In U12 we have the operation table.

1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

and in Z2 × Z2, we have the operation table

(0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)
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From the table, we see that the map φ : U12 → Z2 × Z2 given by φ(1) =
(0, 0), φ(5) = (1, 0), φ(7) = (0, 1) and φ(11) = (1, 1) is an isomorphism.
Examples:
If a ∈ G with |a| =∞, then 〈a〉 ∼= Z.
Indeed, the map φ : 〈a〉 = {ak|k ∈ Z} → Z given by φ(ak) = k is an isomorphism
with inverse ψ : Z → 〈a〉 given by ψ(k) = ak. (ψ is a homomorphism because
ψ(k + l) = ak+l = ak · al = ψ(k) · ψ(l) and ψ is bijective by the Elements in
Cyclic Groups Theorem.)
Examples:
If a ∈ G with |a| = n ∈ Z+, then 〈a〉 ∼= Zn
Indeed, the map ψ : Zn → 〈a〉 given by ψ(k) = ak is a group isomorphism. (by
the Elements in Cyclic Groups Theorem)
Theorem:
When k, l ∈ Z+ with gcd(k, l) = 1, we have Zkl ∼= Zk × Zl and Ukl ∼= Uk × Ul.
Indeed, the map φ : Zkl → Zk × Zl and the map φ : Ukl → Uk × Ul given by
φ(a) = (a, a), that is

φ(a mod kl) = (a mod k, a mod l)

are group isomorphisms.
Proof:
Let us show that φ : Ukl → Uk × Ul is an isomorphism.
Note that φ is well-defined because, for a ∈ Z, if a ∈ Ukl, so gcd(a, kl) = 1
then gcd(a, k) = 1 and gcd(a, l) = 1.
So a ∈ Uk and a ∈ Ul
Hence φ(a) = (a, a) ∈ Uk × Ul
Also note that φ is group homomorphism because, for a, b ∈ Z

φ(a · b) = (a · b, a · b) ∈ Uk × Ul
= (a, a) · (b, b) ∈ Uk × Ul

Finally note that φ is bijective by the Chinese Remainder Theorem:
Given a with gcd(a, k) = 1, so a ∈ Uk and b with gcd(b, l) = 1, so b ∈ Ul
We can solve the pair of congruences

x = a mod k

x = b mod l

by the CRT.
and then
Since x = a mod k, we have gcd(x, k) = gcd(a, k) = 1.
And since x = b mod l, we have gcd(x, l) = gcd(b, l) = 1.
And since gcd(x, k) = 1 and gcd(x, l) = 1, we have gcd(x, kl) = 1, so x ∈ Ukl.
and since x = a mod k and x = b mod l
We have
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φ(x) = (a, b) ∈ Uk × Ul
This shows that φ is surjective.
The CRT also implies that φ is injective because the solution to the pair of
congruences

x = a mod k

x = b mod l

is unique modulo, lcm(k, l) = kl, (since gcd(k, l) = 1)
Corollary:

1. When k, l ∈ Z+ with gcd(k, l) = 1, we have φ(kl) = φ(k)φ(l). Since
φ(kl) = |Ukl| = |Uk × Ul| = |Uk| · |Ul| = φ(k) · φ(l)

2. When n =
∏l
i=1 p

ki
i , where the pi are distinct primes,

φ(n) =

l∏
i=1

φ(pkii ) =

l∏
i=1

(pkii − p
ki−1
i )

Example:

|U3000| = φ(3000)

= φ(23 · 31 · 53)

=
(
23 − 22

) (
31 − 30

) (
53 − 52

)
= 4 · 2 · 100 = 800

Theorem: (Properties Shared by Isomorphic Groups)
Let φ : G→ H be a group isomorphism. Then

1. |G| = |H|

2. G is abelian ⇐⇒ H is abelian.

3. For a ∈ G, we have |a| = |φ(a)|

4. G is cyclic ⇐⇒ H is cyclic.

5. G and H have the same number of elements of each order

For n ∈ Z+ ∪ {∞}, we have

|{a ∈ G||a| = n}| = |{b ∈ H||b| = n}|
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6. For a, b ∈ G, we have

a ∼ b ⇐⇒ φ(a) ∼ φ(b)

7. G andH have the same number of conjugacy classes (and the same number
of classes of each size)

8. For K ≤ G, the restriction φ : K → φ(K) is an isomorphism.

9. G and H have the same number of subgroups (and the same number of
n-element subgroups, and the same number of subgroups isomorphic to a
particular group L).
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Sample Proof:
Let φ : G→ H be a group homomorphism, and let a ∈ G.
Let us show that |a| = |φ(a)|
For n ∈ Z+,

an = e ⇐⇒ φ(an) = φ(e) Since φ is injective.

⇐⇒ φ(a)n = e Since φ(an) = φ(a)n, and φ(e) = e

Example:

1. U35 6∼= U42

Since |U35| = φ(35) = 24, |U42| = φ(42) = 12.

2. S5 6∼= GL3(Z2)

Since |S5| = 5! = 5 · 4 · 3 · 2
and |GL3(Z2)| = (23 − 1)(23 − 2)(23 − 22) = 7 · 6 · 4

3. R∗ 6∼= C∗

Since R∗ has no elements of order 3, but in C∗, α = ei2π/3 and also
α2 = ei4π/3 have order 3.

Inner Automorphisms
Recall that for a group G, Aut(G) is the set of isomorphisms φ : G→ G. Note
that Aut(G) is a group under composition.
Note that for a ∈ G, the conjugation map Ca : G→ G given by Ca(x) = axa−1

is a group automorphism indeed.

Ca(xy) = axya−1

= axa−1aya−1

= Ca(x)Ca(y)
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and for a, b ∈ G,

Ca(Cb(x)) = Ca(bxb−1) = abxb−1a−1

= (ab)x(ab)−1 = Cab(x)

So that in particular,

(Ca)
−1

= Ca−1

An automorphism of G of the Ca : G → G for some a ∈ G is called an inner
automorphism and we denote the set of inner automorphisms by Inn(G)

Inn(G) = {Ca : G→ G|a ∈ G}

Note that the above calculations show that

Inn(G) ≤ Aut(G)

Exercise:

1. Show that Aut(Zn) ∼= Un

2. Find |AutD6| and |InnD6|

Theorem: (Cayley’s Theorem)

1. If G is any set with n elements, then Perm(G) ∼= Sn.

Indeed, if f : G → {1, 2, . . . , n} is any bijection, then the map φ :
Perm(G)→ Sn given by φ(σ)(k) = f(σ(f−1(k))) for k ∈ {1, 2, . . . , n}.
That is, φ(σ) = fσf−1.

2. If G is any group, then G is isomorphic to a subgroup of Perm(G). Indeed,
the map ψ : G→ Perm(G) given by ψ(a) = La (where La : G→ G is given
by La(x) = ax) is an injective group homomorphism. (So ψ : G → ψ(G)
is an isomorphism)

3. If G is a finite group with |G| = n, then G is isomorphic to a subgroup of
Sn.

Sketch Proof:

1. Verify that if σ ∈ Perm(G), then φ(σ) = fσf−1 ∈ Sn.
(So φ(σ) = fσf−1 ∈ Perm{1, 2, . . . , n})
Also, verify that φ is a homomorphism.

(Proof: φ(στ) = fστf−1 = fσf−1fτf−1 = φ(σ)φ(τ))

Also, verify that φ is bijective.
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2. Let ψ : G→ Perm(G) be given by ψ(a) = La.

Verify that ψ is well-defined. ((La)−1 = La−1)

Verify that ψ is a group homomorphism. (ψ(ab) = Lab = LaLb =
φ(a)φ(b))

Verify that φ is injective.

(For a, b ∈ G, if φ(a) = φ(b), so La = Lb (as functions), then La(x) =
Lb(x) for all x ∈ G. So a = La(e) = Lb(e) = b)

3. Compose ψ and φ from parts (1) and (2).

Example:
U12

1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

If we use the bijection f : U12 → {1, 2, 3, 4} given by f(1) = 1, f(5) = 2, f(7) =
3, f(11) = 4.
Then U12 is isomorphic to the subgroup {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} =
A4 ≤ S4
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Chapter 5: Cosets, Quotient Groups
Definition:
Let G be a group and let H ≤ G.
For a ∈ G, the left coset of H in G containing a is the set

aH = {ah|h ∈ H}
= La(H)

and the right coset of H in G containing a is the set

Ha = {ha|h ∈ H}
= Ra(H)

When G is abelian, there is no difference between left and right cosets, so we
just call them cosets.
When G is an additive abelian group, we write aH (and Ha) as a+H and then
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a+H = {a+ h|h ∈ H}

Exercise:
Think about cosets of 〈n〉 = nZ = {. . . ,−n, 0, n, 2n, . . . } in Z.
Theorem:
Let G be a group and let H ≤ G,

1. For a, b ∈ G, aH = bH ⇐⇒ a ∈ bH ⇐⇒ b−1a ∈ H

2. For a, b ∈ G, either aH = bH or aH ∩ bH = ∅

3. For all a ∈ G, |aH| = |H|

Proof:

1. Let a, b ∈ G.

• If aH = bH, then a ∈ bH because a = ae ∈ aH.

• If a ∈ bH, say a = bh where h ∈ H, then b−1a = h ∈ H.

Suppose that b−1a ∈ H, say b−1a = h ∈ H.

If x ∈ aH, say x = ak with k ∈ H, then x = ak = (bh)k = b(hk) ∈ bH
(since hk ∈ H).

If y ∈ bH, say y = bl with l ∈ H, then y = bl =
(
ah−1

)
l = a

(
h−1l

)
∈ aH

2. Part(2) holds because we can (obviously) define an equivalence relation ∼
on G by define

a ∼ b ⇐⇒ aH = bH

(⇐⇒ a ∈ bH ⇐⇒ b−1a ∈ H)

and then, for a ∈ G, the equivalence class of a is

[a] = {b ∈ G|b ∼ a}
= {b ∈ G|b ∈ aH}
= aH

3. Note that for a ∈ H, we have |aH| = |H| because the map La : H → aH
is bijective with inverse La−1 : aH → H.
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Notation:
When H ≤ G and, for a, b ∈ G, we define

a ∼ b ⇐⇒ aH = bH

the quotient G/ ∼ is also written as G/H so

G/H = {aH|a ∈ G}

Theorem: (Lagrange’s Theroem)
Let G be a group and let H ≤ G.
Then |G/H| · |H| = |G|
Proof:
This holds because G is the disjoint cosets and the cosets all have size |H|.
Corollary:
Let G be a finite group.

1. If H ≤ G, then |H|
∣∣∣∣|G|.

2. If a ∈ G, then |a|
∣∣∣∣|G|.

Corollary: (Euler-Fermat Theorem)
Corollary:
If a ∈ Un, then aφ(n) = 1.
Corollary: (The Classification of Groups of Order p)
Let p be a prime number and let G be a group with |G| = p. Then G ∼= Zp.
Proof:

For any a ∈ G, we have |a|
∣∣∣∣|G|. So |a|

∣∣∣∣p, so |a| = 1 or p.

The only element of order 1 is e. So all the other elements have order p (and
generate G).
Side Note:
For a, b ∈ Z,

a ∼ b ⇐⇒ a− b ∈ nZ
⇐⇒ a = b mod n

So Z/nZ = Zn.
Theorem:
Let H ≤ G. Then the following are equivalent.

1. We can define a binary operation on G/H by (aH) (bH) = (ab)H

2. For all a ∈ G and h ∈ H, we have aha−1 ∈ H.

3. For all a ∈ G, we have aH = Ha.
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4. For all a ∈ G, aHa−1 = H, where aHa−1 = {aha−1|h ∈ H = Ca(H)}

Proof:
Note that (1) means that for all a, b, c, d ∈ G, if aH = cH and bH = dH, then
(ab)H = (cd)H. Equivalently, it means that for all a, b, c, d ∈ G, if c−1a ∈ H
and d−1b ∈ H, then d−1c−1ab = uhu−1 ∈ H.
Suppose (1) holds (in the above form)
Let u ∈ G and h ∈ H. Choose b = d = u−1, and a = h and c = e.
Then, c−1a = h ∈ H and d−1b = u · u−1 = e ∈ H.
So d−1b−1ab ∈ H, that is uhu−1 ∈ H.
Suppose, conversely, that (2) holds, (so we have uhu−1 ∈ H for all u ∈ G and
h ∈ H)
Let a, b, c, d ∈ G with c−1a ∈ H and d−1b ∈ H, say c−1a = k ∈ H, and
d−1b = l ∈ H.
Then d−1c−1ab = d−1kb = d−1kdl ∈ H,
since d−1kd ∈ H (by (2) using u = d−1, h = k)
and l ∈ H.
Let us show that (2) ⇐⇒ (3).
Suppose (2) holds, (aha−1 ∈ H for all a ∈ G, h ∈ H).
If x ∈ aH, say x = ah with h ∈ H. Then x = ah = aha−1a ∈ Ha, since
aha−1 ∈ H.
If y ∈ Ha, say y = ha with h ∈ H, then y = ha = aa−1ha ∈ aH, since
a−1ha ∈ H.
This proves that (2)⇒ (3).
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Normal Subgroups
For H ≤ G, a ∈ G, aH = {ah|h ∈ H}.

a ∼ b ⇐⇒ b ∈ aH ⇐⇒ a−1b ∈ H
⇐⇒ a ∈ bH
⇐⇒ aH = bH

Side Notes:
|aH| = |H|.

For H ≤ G, a ∈ G, |H|
∣∣∣∣|G|, |a|∣∣∣∣|G|.

Theorem:
Let H ≤ G. The following are equivalent.

1. We can define a well-defined binary operation on G/H by (aH)(bH) =
(ab)H for all a, b ∈ G.

2. For all a ∈ G, h ∈ H : aha−1 ∈ H.
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3. For all a ∈ G, aH = Ha.

4. For all a ∈ G,Ca(H) = aHa−1 = H.

Proof:
Proof 1 ⇐⇒ 2; Done.
Proof 2 ⇐⇒ 3; Done.
Proof 3 ⇐⇒ 2;
Suppose that 3 holds. Let a ∈ G and h ∈ H, by (3), we have aH = Ha.
So in particular, ah ∈ Ha, say ah = ka where k ∈ H.
Then aha−1 = k ∈ H.
The equivalence of part 4 is left as an exercise.
Remark:
For a ∈ G, the map Ca : G → G given by Ca(x) = axa−1 is an automorphism
of G.
So Ca : H → Ca(H) = aHa−1.
Hence, aHa−1 ≤ G with aHa−1 ∼= H.
The groups H and aHa−1 are called conjugate subgroups of G.
Definition:
When a subgroup H ≤ G satisfies the equivalent conditions of the above theo-
rem, we say that H is a normal subgroup of G, and we write H E G.
In this case, the (well-defined) operation on G/H given by (aH) (bH) = (ab)H
makes G/H into a group, which we call the quotient group of G by H.
The identity element in G/H is eH = H.
The inverse of aH is a−1H.
Remark:
When G is an abelian group, every subgroup H ≤ G is a normal subgroup.
Exmaples:
In Z, for n ∈ Z+,

〈n〉 = nZ = {. . . ,−n, 0, n, 2n. . . . }

and Z/nZ = Zn.
Theorem (The First Isomorphism Theorem)

1. Let φ : G→ H be a group homomorphism and let K = Ker φ ≤ G. Then
K E G and G/K ∼= φ(G).

Indeed, the map Φ : G/K → φ(G) given by Φ(aK) = φ(a) is a well-defined
group homomorphism.

2. Let K E G. Then the map φ : G→ G/K given by φ(a) = aK is a group
homomrophism with Ker φ = K.

Proof:

1. Note that K E G where K = Ker φ because if a ∈ G and k ∈ K, so
φ(k) = e, then aka−1 ∈ K since
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φ(aka−1) = φ(a)φ(k)φ(a)−1

= φ(a) · e · φ(a)−1

= φ(a)φ(a)−1 = e

(We used part (2) of the definition of normal.)

Note that Φ : G/K → φ(G) given by Φ(aK) = φ(a) for a ∈ G is well-
defined because for a, b ∈ G with aK = bK, we have a−1b ∈ K, say
a−1b = k ∈ K = Ker φ.

So φ(a−1b) = e, hence φ(a)−1φ(b) = e.

Hence φ(b) = φ(a).

Note that Φ is a group homomorphism because, for a, b ∈ G

Φ((aK)(bK)) = Φ((ab)K)

= φ(ab) = φ(a)φ(b)

= Φ(aK)Φ(bK)

Side note: φ : G→ H,K = Ker φ,Φ(aK) = φ(a),Φ : G/K → φ(G).

Note that Φ is surjective because given b ∈ φ(G), say b = φ(a) with a ∈ G,
then Φ(aH) = φ(a) = b.

Note that Φ is injective because for a ∈ G,

Φ(aK) = e =⇒ φ(a) = e =⇒ a ∈ K =⇒ aK = eK = K

(So that aK is the identity element in G/K).

17 October 23rd

H E G when aha−1 ∈ H for all a ∈ G, h ∈ H or when aH = Ha for all a ∈ G.
Then G/H is a group under (aH) (bH) = (ab)H for a, b ∈ G.
Theorem: (The First Isomorphism Theorem)

1. If φ : G → H is a group homomorphism, and K = Ker φ, then K E G
and G/K ∼= Image(φ) = φ(G).

Indeed, the map Φ : G/K → φ(G) given by Φ(aK) = φ(a) is an isomor-
phism.
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Examples:
The map φ : G→ H given by φ(a) = e is a homomorphism. We have Ker φ = G
and Im φ = {e} and G/G ∼= {e}.
The map φ : G→ G given by φ(a) = a for all a ∈ G, is a homomorphism.
We have Ker φ = {e} and Im φ = G and G/{e} ∼= G.
For n ∈ Z+, the map φ : Z → Zn given by φ(k) = k is a homomorphism,
Ker φ = nZ = 〈n〉 = {. . . ,−n, 0, n, 2n, . . . }
Im φ = Zn
Z/nZ ∼= Zn
(Indeed, Z/nZ = Zn).
The map φ : R→ S1 given by φ(t) = ei2πt is a homomrophism with Ker φ = Z
and Im φ = S1. So R/Z ∼= S1.
The map φ : C∗ → R given by φ(z) = |z| is a homomorphism (since |zw| =
|z||w|) with Ker φ = S1 and Im φ = R+.
So C∗/S1 ∼= R+

The map φ : C∗ → C∗ given by φ(z) = z
|z| is a homomorphism, (since zw

|zw| =
z
|z| ·

w
|w| ) with Ker φ = R+ and Im φ = S1.

So C∗/R+ = S1.
Note also that

C∗ ∼= R+ × S1

with an isomorphism

φ : R+ × S1 → C∗

given by φ(r, eiθ) = reiθ

When R is a commutative ring with 1, the map

φ : GLn(R)→ R∗

given by φ(A) = det(A) is a group homomorphism with Ker φ = SLn(R) and

Im φ = R∗. (Since a ∈ R∗,det


a

1
. . .

1

 = a )

So SLn(R) E GLn(R) and GLn(R)/SLn(R) ∼= R∗.
Let G be any group. Then the map φ : G→ Aut(G) given by φ(a) = Ca where
Ca : G → G is given by Ca(x) = axa−1 for x ∈ G, is a group homomorphism
with

46



Ker φ = {a ∈ G|Ca = I}
= {a ∈ G|Ca(x) = x for all x ∈ G}
= {a ∈ G|axa−1 = x for all x ∈ G}
= {a ∈ G|ax = xa for all x ∈ G}
= Z(G) (The centre of G)

and Im φ = {Ca|a ∈ G} = Inn(G)
So Z(G) E G and G/Z(G) ∼= Inn(G).
Example:
Let H = SpanZ{(2, 6), (6, 3)} ≤ Z2.
Show that Z2/H ∼= Z30 and find a homomorphism φ : Z2 → Z30 with Ker φ =
H.
Sketch Solution:
A graph here, see pictures.
(0, 0) +H = H
(1, 0) +H
(10, 0) +H = H since (10, 0) ∈ H.
In G/H, the order of (1, 0) +H = 10.
Verify that G/H is generated by (1, 1) +H.

det

(
2 6
6 3

)
= | − 30| = 30

So G/H is cyclic of order 30.
∴ G/H ∼= Z30.
Define φ : Z2 → Z30 by φ(k(1, 1) + H) = k, or equivalently by φ((k, l) + H) =
9k − 8l.
Verify that for φ as above, we do have Ker φ = H
Side Note:
To get φ(k(1, 1)+H) = k, we need φ((1, 0)+H) = 9 and φ((0, 1)+H) = 22 = −8.
If (k, l) ∈ H, say

(k, l) = s(2, 6) + t(6, 3)

= (2s+ 6t, 6s+ 3t)

for some s, t ∈ Z
and then

9k − 8l = 9(2s+ 6t)− 8(6s+ 3t)

= −30s+ 30t

= 30(t− 3)

So 9k − 8l = 0 mod 30
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Hence, φ((k, l) +H) = 0 ∈ Z30

Verify that if 9k − 8l = 0 mod 30, then

(k, l) = s(2, 6) + t(6, 3)

for some s, t ∈ Z.
We have

(
k
l

)
= s

(
2
6

)
+ t

(
6
3

)
⇐⇒

(
k
l

)
=

(
2 6
6 3

)(
s
t

)
⇐⇒

(
s
t

)
=

(
2 6
6 3

)−1(
k
l

)
=

1

30

(
−3 6
6 −2

)(
k
l

)
Definition:
A group G is called simple when G has no non-trivial proper normal subgroups.
Exercise: (Fairly hard)
Show that for n ≥ 3, An is simple.

18 October 25th

Theorem: (Characterization of Internal Direct Products)
Let G be a group and let H,K ⊆ G. Suppose H E G,K E G, H ∩K = {e}
and HK = G (where HK = {ab|a ∈ H, b ∈ K}). Then G ∼= H ×K. Indeed,
the map φ : H ×K → G given by φ(a, b) = ab is an isomorphism.
Proof:
We claim that φ is a homomorphism.
For a, c ∈ H and b, d ∈ K. We have

φ((a, b) · (c, d)) = φ(ac, bd)

= acbd

and

φ(a, b) · φ(c, d) = abcd

= acc−1bcb−1bd

= acebd

= acbd

because
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c−1bcb−1 = c−1(bcb−1) ∈ H

Since c−1 ∈ H, bcb−1 ∈ H. Since H E G.
and

c−1bcb−1 = (c−1bc)b−1 ∈ K

Since b−1 ∈ K and c−1bc ∈ K.
So we have

c−1bcb−1 ∈ H ∩K = {e}

Note that φ is surjective since HK = G. (So every element in G is of the form
ab for some a ∈ H, b ∈ K)
Also, φ is injective because for a ∈ H, b ∈ K, we have

φ(a, b) = e⇒ ab = e

⇒ a = b−1

⇒ a and b−1 are both in H ∩K = {e}
⇒ a = b−1 = e

⇒ (a, b) = (e, e)

Theorem (Classification of Groups of Order 2p)
Let p be a prime number and let G be a group with |G| = 2p. Then, either
G ∼= Z2p or G ∼= Dp.
Proof: Exercise.
Theorem (Classification of Groups of Order p2)
Let p be a prime number and let G be a group with |G| = p2. Then, either
G ∼= Zp2 or G ∼= Zp × Zp.
Proof:

For a ∈ G. Since |a|
∣∣∣∣|G|, we have |a| = 1, p, or p2.

Suppose G 6∼= Zp2 . So G is not cyclic. Then G has no elements a ∈ G with
|a| = p2.
So every e 6= a ∈ G has order p.
Let e 6= a ∈ G. We claim that 〈a〉 E G.
Suppose, for a contradiction, that 〈a〉 6E G.
Side Note:
H E G when xhx−1 ∈ H for all x ∈ G, h ∈ H.
Choose x ∈ G and ak ∈ 〈a〉. So that xakx−1 6∈ 〈a〉.
It follows that xax−1 6∈ 〈a〉, since if we had xax−1 ∈ 〈a〉, then we would have(
xax−1

)k ∈ 〈a〉, but
(
xax−1

)k
= xax−1xax−1 . . . xax−1 = xakx−1.

Since xax−1 6= e, ∴ |xax−1| = p.
Since 〈a〉 and 〈xax−1〉 are distinct p-element subgroups of G, 〈a〉 ∩ 〈xax−1〉 is a
proper subgroup of 〈a〉 whose only subgroups are {e} and 〈a〉 (because 〈a〉 ∼= Zp)
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Thus, 〈a〉 ∩ 〈xax−1〉 = {e}
Since 〈a〉 ∩ 〈xax−1〉 = {e}, it follows that the cosets,
e〈xax−1〉, a〈xax−1〉, a2〈xax−1〉, . . . , ap−1〈xax−1〉 are all distinct. Indeed

ak〈xax−1〉 = al〈xax−1〉 ⇒ al−k ∈ 〈xax−1〉
⇒ al−k ∈ 〈a〉 ∩ 〈xax−1〉 = {e}
⇒ al−k = e

⇒ al = ak

Since |G| = p2 and these p-element cosets are distinct, G is the union of these
cosets.
In particular, x−1 lies in one of the cosets, say x−1 ∈ ak〈xax−1〉, say x−1 ∈
ak
(
xax−1

)l
= akxalx−1.

Then, e = akxal.
So x = a−k−l ∈ 〈a〉.
Hence, xax−1 ∈ 〈a〉, which contradicts our choice of x.
This proves that 〈a〉 E G. Since e 6= a ∈ G was arbitrary, 〈a〉 E G for all a ∈ G.
Let e 6= a ∈ G. Choose b ∈ G with b /∈ 〈a〉. Then 〈a〉 and 〈b〉 are distinct,
p-element cyclic subgroups of G.
So 〈a〉 ∩ 〈b〉 = {e}
(Since it is a proper subgroup of 〈a〉 ∼= Zp).
As above, it follows that the cosets e〈b〉, a〈b〉, a2〈b〉, . . . , ap−1〈b〉 are all distinct.
(if ak〈b〉 = al〈b〉, then al−k ∈ 〈b〉. So that 〈a〉 ≤ 〈b〉).
As above, G is the union of these distinct cosets.
Thus, every element in G is of the form akbl for some k, l ∈ Z.
So we have

G = 〈a〉〈b〉

Since 〈a〉 E G, 〈b〉 E G, 〈a〉 ∩ 〈b〉 = {e}, and G = 〈a〉〈b〉.
and so we have

G ∼= 〈a〉 × 〈b〉 ∼= Zp × Zp
by the Characterization of Direct Products.

19 October 28th

Group Actions and Representations
Definition:
A representation of a group G is a group homomorphism, ρ : G → Perm(S)
for some set S.
An injective representation is called faithful.
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When ρ : G→ Perm(S) is faithful, we sometimes identity G with the isomorphic
group ρ(G) ≤ Perm(G).
An action of a group G on a set S is a function ∗ : G×S → S, where for a ∈ G
and x ∈ S, we write ∗(a, x) as a ∗ x or sometimes just as ax, such that

1. ex = x for all x ∈ S and

2. a(bx) = (ab)x for all a, b ∈ G and x ∈ S.

Note that there is a natural bijective correspondence between the set of all group
actions of G on S and the set of all representations ρ : G→ Perm(S).
The action and its corresponding representation are related by

a+ x = ρ(a)(x)

for a ∈ G and x ∈ S.
Example:
When G acts on itself by left multiplication. (So a ∗ x = ax for all a, x ∈ G),
the corresponding representation ρ : G → Perm(G) is given by ρ(a)(x) = ax,
that is ρ(a) = la, where la : G→ G is given by la(x) = ax.
This representation is faithful (since for a, b ∈ G, if la = lb, then la(x) = lb(x)
for all x ∈ G. So a = a · e = la(e) = lb(e) = be = b)
This was used in the proof of Cayley’s Theorem.
Example:
When G acts on itself by conjugation, that is when

a ∗ x = axa−1

The corresponding representation ρ : G → Perm(G) is given by ρ(a)(x) =
axa−1 = Ca(x), that is ρ(a) = Ca, where Ca : G→ G is given by Ca(x) = axa−1

We have

Im(ρ) = ρ(G) = Inn(G)

and Ker(ρ) = Z(G)
So we have Z(G) E G and G/Z(G) ∼= Inn(G)
Example:
Let R be a commutative ring with 1.
When GLn(R) acts on Rn by matrix multiplication. The corresponding repre-
sentation ρ : GLn(R) → Perm(Rn) is given by ρ(A)(x) = Ax = LA(x) where
LA : Rn → Rn is given by LA(x) = Ax, so we have ρ(A) = LA. This repre-
sentation is faithful (and we often identify a matrix A with its associated linear
map ρ(A) = LA)
Definition:
Let G be a group which acts on a set S.
When a ∈ G, the fixed set of a is the set

Fix(a) = FixG(a) = {x ∈ S|ax = x} ⊆ S

51



For x ∈ S, the orbit of x is the set

Orb(x) = OrbG(x) = {ax|a ∈ G} ⊆ S

For x ∈ S, the stabilizer of x is the subgroup

Stab(x) = StabG(x) = {a ∈ G|ax = x} ≤ G

Note that Stab(x) ≤ G because e ∈ Stab(x) since e · x = x.
If a, b ∈ Stab(x), so ax = x and bx = x.
Then (ab)(x) = a(bx) = ax = x.
So that a, b ∈ Stab(x), and if a ∈ Stab(x), so ax = x.
Then a−1x = a−1(ax) = (a−1a)x = ex = x
So that a−1 ∈ Stab(x)
Example:
When SO2(R) = {Rθ|θ ∈ R} acts on R2, for u ∈ R2

Orb(u) = {Au|A ∈ SO2(R)}
= {x ∈ R2||x| = |u|}

When SOn+1(R) acts on Rn+1, and en+1 = (0, . . . , 0, 1)T

Orb(en+1) = {Aen+1|A ∈ SOn+1(R)}
= Sn = {u ∈ Rn+1||u| = 1}

(Since Aen+1 is the last column of A, which can be any unit vector and

Stab(en+1)

={A ∈ SOn+1(R)|Aen+1 = en+1}

=

{[
B 0
0 1

]
|B ∈ SOn(R)

}
)
Example:
When G is a group and H ≤ G and H acts on G by right-multiplication, that
is h ∗ x = xh for h ∈ H and x ∈ G, the orbit of an element a ∈ G is

Orb(a) = {ah|h ∈ H}
= aH
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20 October 30th

A representation of G is a group homomorphism ρ : G → Perm(S) for some
set S.
An action of G on S is a map ∗ : G × S → S, where we write ∗(a, x) as a ∗ x
and sometimes as ax such that

ex = x for all x ∈ S

a(bx) = (ab)x for all a, b ∈ G, x ∈ S.
These are the same thing:

ρ(a)(x) = a ∗ x

Fix(a) = {x ∈ S|ax = x},Orb(x) = {ax|a ∈ G},Stab(x) = {a ∈ G|ax = x}

When a group G acts on a set S, we can define an equivalence relation ∼ on S
by

x ∼ y ⇐⇒ y = a · x for some a ∈ G
⇐⇒ y ∈ Orb(x)

This is an equivalence relation because

x ∼ x

Since x = ex ∈ Orb(x)
If x ∼ y, say y = ax, then

a−1y = a−1 (ax) =
(
a−1a

)
x

= ex = x

So y ∼ x.
And if x ∼ y and y ∼ z
Say y = a · x and z = b · y, then z = by = b(ax) = (ba)x
So x ∼ z.
Note that, using this equivalence relation,

[x] = {y ∈ S|x ∼ y}
= {y ∈ S|y = a · x for some a ∈ G}
= {ax|a ∈ G}
= Orb(x)
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We write S/ ∼ as S/G.
So

S/G = {[x]|x ∈ S}
= {Orb(x)|x ∈ S}

and S is the disjoint union of the disjoint orbits.
Examples:
When H ≤ G and H acts on G by right multiplication, so h ∗ a = ah for
a ∈ G, h ∈ H
We have Orb(a) = {ah|h ∈ H} = aH
In this case, our new notation G/H agrees with our previous notation

G/H = {aH|a ∈ G}
(When H acts on G by left multiplication, so h ∗ a = ha for h ∈ H, a ∈ G, our
new and old notations do not agree)
Theorem (The Orbit / Stabilizer Theorem)
Let G be a fintie group which acts on a set S. For each x ∈ S,

|Orb(x)| · |Stab(x)| = |G|
Proof:
Let x ∈ S, let H = Stab(x) ≤ G.
We know (from Lagrange’s Theorem)

|G| = |G/H| · |H|
We need to show that

|Orb(x)| = |G/H| = |G/Stab(x)|
Define F : G/H → Orb(x) by F (aH) = ax for a ∈ G.
Note that F is well-defined, because, for a, b ∈ G, if aH = bH, then b−1a ∈
H = Stab(x).
So (b−1a)(x) = x
Hence, ax = bx.
F is clearly surjective. Note that F is injective because for a, b ∈ G. If F (aH) =
F (bH), then ax = bx.
So b−1ax = x.
Hence, b−1a ∈ Stab(x) = H.
Hence, aH = bH.
Theorem (Burnside’s Counting Lemma or
The Cauchy-Frobenius Counting Lemma)
Let G be a finite group which acts on a finite set S.
Then

|S/G| = 1

|G|
∑
a∈G
|Fix(a)|
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Proof:
Let T = {(a, x)|a ∈ G, x ∈ S, ax = x}
Then |T | =

∑
a∈G |{x ∈ S|ax = x}| =

∑
a∈G |Fix(a)| and

|T | =
∑
x∈S
|{a ∈ G|ax = x}|

=
∑
x∈S
|Stab(x)|

=
∑
x∈S

|G|
|Orb(x)|

=
∑

A∈S/G

∑
x∈S

|G|
|A|

=
∑

A∈S/G

|G|

= |G||S/G|
Thus, |G||S/G| =

∑
a∈G |Fix(a)|

Example:
Find the number of ways to colour the 6 vertices of a regular hexagon using 3
colours, up to equivalence under symmetry under the natural action of D6.
Example:
Find the number of ways to colour the 8 vertices of a cube, up to symmetry
under the group of rotations in SO3(R) of the cube, using 2 colours.
Solution:
Let G be the group of rotations of the cube and let S be the set of all possible
28 colourings of the vertices (ignoring symmetry).
G acts on S and we need to find |S/G|.
A picture here, refer to the photos.
If we fix a vertex x, then under the action of G, on the 8 vertices of the cube

|G| = |Stab(x)| · |Orb(x)|
We have |Orb(x)| = 8 and |Stab(x)| = 3. Hence, |G| = 24.
Pictures here. Refer to the photos.

21 November 1st

The table below comes with accompanying pictures. Refer to photos.

Type of A # of such A |Fix(A)|
I 1 28

RV,± 2π
3

8 24

RE,π 6 24

RF,±π2 6 22

RF,π 3 24

55



Thus, we have

|S/G| = 1

|G|
∑
A∈G
|Fix(A)|

=
1

24

(
1 · 28 + 8 · 24 + 6 · 24 + 6 · 22 + 3 · 24

)
=

1

3
(32 + 16 + 12 + 3 + 6)

= 23

If we use n colours, we get

|S/G| = 1

24

(
1 · n8 + 8 · n4 + 6n4 + 6n2 + 3n4

)
=

1

24

(
n8 + 17n4 + 6n2

)
In particular, n8 + 17n4 + 6n2 = 0 mod 24 for all n ∈ Z+.
Theorem (The Class Equation)
Let G be a finite group. Let m be the number of conjugacy classes in G.
(The conjugacy class of x ∈ G is Cl(x) = {axa−1|a ∈ G})
Choose elements x1, ·, xm with one from each conjugacy class.
Then

|G| =
m∑
k=1

|G/C(xk)|

where C(xk) = {a ∈ G|axk = xka}, which is the centralizer of xk in G.
Proof:
When G acts on itself by conjugation, (so a ∗ x = axa−1) for x ∈ G,

Orb(x) = {axa−1|a ∈ G} = Cl(x)

and

Stab(x) = {a ∈ G|axa−1 = x} = C(x) ≤ G
By the Orbit / Stabilizer Theorem, |G/Stab(x)| = |Orb(x)|
Since G is the disjoint union of the orbits, (and we selected one element xk from
each orbit)

|G| =
m∑
k=1

|Orb(xk)| =
m∑
k=1

|G/Stab(xk)|

=

m∑
k=1

|G/C(xk)|
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Theorem (Cauchy’s Theorem)
Let G be a finite group with |G| = n.
Let p be a prime factor of n. Then G has an element of order p.
In fact, we shall prove that

|{a ∈ G||a| = p}| = p− 1 mod p(p− 1)

Proof:
Let m = |{a ∈ G||a| = p}|
Note that m = l − 1 where

l = |{a ∈ G|ap = e}|

Recall that m is a multiple of φ(p) = p− 1.
So m = 0 mod p− 1
So m = p− 1 mod p− 1
It remains to show that m = p− 1 mod p.
Let S = {(x1, x2, . . . , xp) | each xk ∈ G and

∏
xk = e} and Zp act on S by

cyclic permutation, so

k ∗ (x1, x2, . . . , xp) = (xk+1, xk+2, . . . , xp, x1, xk)

Then for x = (x1, . . . , xp) ∈ S

|Orb(x)| =

{
1 if x = (a, a, . . . , a) where a ∈ G with ap = e

p otherwise

Since S is the disjoint union of the orbits

|S| = 1 · l + p · t

So that l = |s| mod p, but also we have

|S| = np−1 = n = 0 mod p

(Since we can choose x1, . . . , xp−1 ∈ G arbitrarily and then xp = (x1, x2, . . . , xp−1)
−1

to get
∏
xk = e)

Hence,

l = 0 mod p

So m = l − 1 = −1 = p− 1 mod p as required.

22 November 4th

Theorem (The Classification of Finite Abelian Groups)
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1. Every finite abelian group is isomorphic to a unique group of the form
Zn1 ×Zn2 × . . .Znl for some l ≥ 0 (l = 0 gives the trivial group) and some
ni ∈ Z+ with n1|n2, n2|n3, . . . , nl−1|nl.

2. Every finite abelian group is isomorphic to a unique group of the form
Zp1k1 × Zp2k2 × . . .Zpmkm for some m ≥ 0, and some primes p1, . . . , pm
with p1 ≤ p2 ≤ · · · ≤ pm and some ki ∈ Z+ with ki ≥ ki+1 when pi = pi+1

Recall that for k, l ∈ Z+, Zk × Zl ∼= Zkl ⇐⇒ gcd(k, l) = 1.

Preliminary Definitions
Definition:
A free abelian group of rank n is a group which is isomorphic to Zn.
Remark: In this chapter, we use additive notation for abelian groups.
Note that the rank of the abelian group is unique: G ∼= Zn and G ∼= Zm with
n,m ∈ Z+, then we must have n = m.
Sketch Proof:
If G ∼= Zn and G ∼= Zm, then we have Zn ∼= Zm.
Let φ : Zn → Zm be an isomorphism.
Note that φ restricts to an isomorphism, φ : 2Zn → 2Zm.
Verify that φ determines an isomorphism

Φ : Zn/2Zn → Zm/2Zm

Also, verify that Zn/2Zn ∼= (Z2)
n
.

It follows that

(Z2)
n ∼= Zn/2Zn ∼= Zm/2Zm ∼= (Z2)

m

So

|Zn2 | = |Zm2 |

That is 2n = 2m. Hence n = m.
Familiar Terminology:
Let G be an abelian group, and let S ⊆ G. A linear combination (over Z) of
elements in S is an element in G of the form

l∑
i=1

tiui

with l ≥ 0, each ti ∈ Z, and each ui ∈ S.
(If we want, we can require that the ui are distinct.)
The span of S (over Z) is the set of linear combination:

〈S〉 = SpanZ(S) = {
l∑
i=1

tiui|l ≥ 0, each ti ∈ Z, each ui ∈ S}

We say that S spans G (over Z) with G = SpanZ(S).
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We say that S is linearly independent (over Z), when for all ti ∈ Z and ui ∈ S
distinct, if

∑l
i=1 tiui, then each ti = 0.

We say that S is a basis for G (over Z), when S is linearly independent and
spans G.
An n-element ordered basis for G is an n-tuple, (u1, u2, . . . , un) of distinct ele-
ments in G such that {u1, u2, . . . , un} is a basis for G.
Side Note: Drop the repetition?
Note:
A group G is a free abelian group of rank n if and only if G has a basis with n
(distinct) elements.
Sketch Proof:
If G is abelian, G ∼= Zn and φ : Zn → G is an isomorphism, then for uk =
φ(ek) = φ(0, 0, 0, . . . , 1, 0, . . . , 0) (1 at kth position.)
The set {u1, . . . , un} is a basis with n distinct elements.
Conversely, if {u1, . . . , un} is a basis for G with distinct elements, then the map
φ : Zn → G given by φ(t1, . . . , tn) =

∑n
i=1 tiui is an isomorphism.

Note:
When (u1, . . . , un) is an ordered basis for the free abelian group G, we can
obtain new basis by performing any of the following 3 operations

1. u 7→ ±uk (replace uk by ±uk)

2. uk ↔ ul (interchanging uk with ul)

3. u 7→ uk + tul with t ∈ Z (replace uk by uk plus an integer multiple of ul
when l 6= k)

Side Note: Analogy to k~v, k ∈ Z
Examples: {(

3
6

)
,

(
6
2

)}
⊆ Z2

is linearly independent (over Z).

H = SpanZ

{(
3
6

)
,

(
6
2

)}
is a free abelian group of rank 2.
Proof Later?
Also, check picture.
Theorem (Classification of Subgroups and Quotient Groups of Finite
Rank Abelian Group)
Let G be a free abelian group of rank n, let H ≤ G. Then H is a free abelian
group of rank at most n. In other words, 0 ≤ r ≤ n. (with r = 0 giving the
trivial group H = {0} which consider to be a free group with empty basis), and
there exists integers, di, d2, . . . , dr ∈ Z+ with d1|d2, d2|d3, . . . , dr−1|dr such that

G/H ∼= Zd1 × Zd2 × . . .Zdr × Zn−r
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Sketch Proof:
To prove this, we shall show that there exists {u1, u2, . . . , un} for G and there
exist d1, d2, . . . , dr as above such that {d1u1, d2u2, . . . , drur} is a basis for H
with each di ∈ Z+ with d1|d2, d2|d3, . . . , dr−1|dr.
If we can find a basis {u1, u2, . . . , un} for G and a basis {d1u1, . . . , drur} for H.
Then, as an exercise, verify that the map φ : G → Zd1 × . . .Zdr × Zn−r by
φ (
∑n
i=1 tiui) = (t1, . . . , tn) is a well-defined surjective group homomorphism

with Ker(φ) = H.
So that we have

G/H ∼= Zd1 × Zd2 × . . .Zdr × Zn−r

We shall prove that such bases for G and H exist by induction on n, the rank
of G
When n = 0, (so G = {0}), there is nothing to prove.
Can start at n = 1, use the knowledge of cyclic group. Not necessary.
Let n ≥ 1, (or n ≥ 2) and suppose the theorem holds for all free abelian groups
G0 of rank n− 1 and all subgroups H0 ≤ G0.
Let G be a free abelian group of rank n and let H ≤ G.
If H = {0} is trivial, there is nothing to prove. (the empty set is a basis for
H = {0} and we take r = 0 )
Suppose H 6= {0}, note that if 0 6= a ∈ H and {v1, . . . , vn} is any basis for
G. Then when we write a =

∑n
i=1 tivi with each ti ∈ Z, at least one of the

coefficients ti 6= 0.
Choose d1 to be the smallest positive integer (Main trick of the theorem!!) which
is equal to one of the coefficients ti in some linear combination a =

∑n
i=1 tivi

for some a ∈ H and for some basis {v1, . . . , vn} for G.
Choose a particular basis {v1, . . . , vn} for G and a particular element a ∈ H of
the form

a = d1v1 + t2v2 + · · ·+ tnvn ∈ H

Note: by our choice of d1, di|ti for 2 ≤ i ≤ n, since 2 ≤ h ≤ n..
We can write

tk = q · d1 + r

for 0 ≤ r < d.
Then we have

a = d1v1 + t2v2 + · · ·+ (q · d1 + r)vk + · · ·+ tnvn

= d1(v1 + q · vk) + t2v2 + · · ·+ rvk + · · ·+ tnvn

So, we must have r = 0, (if 0 < r < d1, this would contradict our choice of d1,
since {v1 + qvk, v2, v3, . . . , vn} is another basis for G).
Write tk = q · d1 for 2 ≤ k ≤ n.
Then a = d1 (v1 + q2v2 + · · ·+ qnvn).
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Let u1 = v1 + q2v2 + · · ·+ qnvn (So a = d1u1 ∈ H)
and note that {u1, v2, v3, . . . , vn} is another basis for G.
Let G0 = SpanZ{v2, v3, . . . , vn} which is a free abelian group with rank of n−1.
Let H0 = H ∩G0 ≤ G0.
We claim that every element b ∈ H, can be written uniquely in the form b =
t1d1u1 + C with t1 ∈ Z, c = H0.
Let b ∈ H, since b ∈ G, we can write b uniquely as b = s1u1 + s2v2 + . . . , snvn.
(Since {u1, u2, . . . , vn} is a basis for G).
Note that d1|s1 using the same argument used above (writing s1 = q · d+ r))
Since di|si, s1u1 is a multiple of du = a ∈ H.
So s1u1 ∈ H.
Hence

s2v2 + · · ·+ snvn = b− s1u1 ∈ H

We have b = s1u1 + c = t1d1u1 + c with c ∈ H.
By the induction hypothesis, we can choose a basis {u2 . . . , un} for G0. And a
basis d2u2, . . . , drur for H0 with d2|d3, d3|d4, . . . , dr−1|dr
Also c ∈ G0 = Span({v2, . . . , vn}), so c ∈ H0.
Thus, every b ∈ H can be written uniquely in the form b = t1d1u1 + t2d2u2 +
· · ·+ trdrur.
Thus, {d1u1, . . . , drur} is a basis for H.
Finally, verify that d1|d2.
Examples:
Let G = Z2 = Z× Z
and let H = SpanZ {(3, 6), (6, 2)}
Note that H has the following bases

{(3, 6), (6, 2)}

{(3, 6), (6, 2) + (3, 6)} = {(3, 6), (9, 8)}

{(3, 6) + 3(9, 8), (9, 8)} = {(30, 30), (9, 8)} = {1 · (9, 8), 30(1, 1)}

Also note that {(9, 8), (1, 1)} is a basis for G = Z× Z.
Since (1, 0) = (9, 8)− 8(1, 1) and (0, 1) = 9(1, 1)− (9, 8)

det

(
9 1
8 1

)
= 1,

(
9 1
8 1

)−1
=

(
1 −1
−8 9

)
It follows that n = 2, r = 2,

G/H ∼= Z1 × Z30 × Z0 ∼= Z30

H = Span{u1, . . . , uk}
A = (u1 . . . uk) ∈Mn×k
Row operations and column operations can convert A to the form
Picture here.
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Theorem: (Classification of Finite Abelian Groups)
Let G be a finite abelian group.

1. G is isomorphic to a unique group of the form

Zn1
× Zn2

× · · · × Znl

with l ∈ Z with l ≥ 0 and each ni ∈ Z with ni ≥ z and n1|n2, . . . , nl−1|nl.

2. G is isomorphic to a unique group of the form

Zp1k1 × Zp2k2 × · · · × Zpmkm

where m ∈ Z with m ≥ 0, each pi is prime with p1 ≤ p2 ≤ · · · ≤ pm, each
ki ∈ Z with ki ≥ 1 such that if pi = pi+1, then ki ≤ ki+1.

Sketch Proof:
Let n = |G| and say G = {a1, . . . , an}.
Define φ : Zn → G by φ (t1, . . . , tn) =

∑n
i=1 tiai.

Verify that φ is a surjective group homomorphism.
By the First Isomorphism Theorem,

G ∼= Zn/H where H = Ker φ

By the previous theroem, we have

G ∼= Zn/H ∼= Zd1 × Zd2 · · · × Zdr × Zn−r

for some 0 ≤ r ≤ n and some di ∈ Z+

with some di ∈ Z+ with d1|d2, d2|d3, . . . , dr−1|dr.
Note that we must have n = r since G is finite.
So

G ∼= Zd1 × Zd2 × . . .Zdn
Say d1 = d2 = · · · = dk = 1 and dk+1 ≥ 2.
Then we can take ni = dk+i for i ≤ i ≤ l where l = n− k.
This puts G up to isomorphism, into the form in Part (1).
Verify that there is a bijective correspondence between the forms described in
Parts (1) and (2).
Examples:

Z2 × Z6 × Z60 × Z3600

= Z2 × Z2·3 × Z22·3·5 × Z24·32·52

∼= Z2 × Z2 × Z3 × Z22 × Z3 × Z5 × Z24 × Z32 × Z52

∼= Z2 × Z2 × Z22 × Z24 × Z3 × Z3 × Z32 × Z5 × Z52
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and

Z21 × Z22 × Z22 × Z23 × Z31 × Z34 × Z34 × Z51 × Z52

∼= Z21 × (Z22 × Z31)× (Z22 × Z34 × Z51)× (Z23 × Z34 × Z52)
∼= Z2 × Z22·3 × Z22·34·51 × Z23·34·52

Finally, we verify that the form of Part (2) is unique (up to isomorphism)
Let G ∼= Zp1k1 × Zp1k2 × · · · × Zpmkm as in Part (2).

We shall show that the prime powers pi
ki are determined from the number of

elements in G of each order.
Fix a prime p, let nk = the number of a ∈ G with |a|/pk. (That is |a| ∈
{1, p, p2, . . . , pk})
Let ak = the number of indices i such that pi = p and ki = k.
Let bk = the number of indices i such that pi = p and ki ≥ k.
Recall that if ai ∈ Zpiki . So a = (a1, . . . , am) ∈ Zp1n1 × . . .Zpmkm , then
|a| = lcm (|a1|, . . . , |am|)
Side Note:
In Zpk , there are φ(p) = p − 1 elements a with |a| = p. So that there are p
elements a with |a| = 1 or p
We have

n1 = # of a ∈ G such that |a| = 1 or p

= pb1

(there are p choices for each Zpiki with pi = p, ki ≥ 1)

n2 = # of a ∈ G such that |a| = 1, p, or p2

= pa1 · p2b2

(there are p choices for each Zpiki with pi = p, ki = 1 and there are p2 choices
for each Zpiki with pi = p, ki ≥ 2)

n3 = pa1p2a2p3b3

and so on, solution
nk = pa1p2a2 . . . p(k−1)ak−1pkbk

Also, note that

ak = bk − bk+1

It follows that
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nk
nk−1

=
p(k−1)ak−1pkbk

p(k−1)bk−1

=
p(k−1)ak−1pkbk

p(k−1)(ak−1+bk)

= pbk

Hence

pak = pbk−bk+1 = pbk/pbk+1

=
nk
nk−1

/
nk+1

nk

=
nk

2

nk−1nk+1

ak = logp

(
nk

2

nk−1nk+1

)
Fact (Gauss)

U2
∼= Z1, U4

∼= Z2, U8
∼= Z2 × Z2, U2n

∼= Z2 × Z2n−2 for n ≥ 3

and
Upk ∼= Zφ(pk)

where φ(pk) = pk − pk−1.

25 November 11th

Chapter 8 Rings
Definition:
A ring is a set R with an element O ∈ R and two binary operations + and ×
such that

1. + is associative

2. + is commutative

3. O is an additive identity

4. Every a ∈ R has an additive inverse

5. × is associative

6. × is distributive over + for all a, b, c ∈ R, a(b+c) = ab+ac and (a+b)c =
ac+ bc.
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R is commutative when × is commutative.
R has an identity (or R has a 1) when there is an element 1 ∈ R with 1 6= 0
such that 1 · a = a · 1 = a for all a ∈ R.
When R has a 1 and a ∈ R, we say that a is invertible, or that a is a unit, when
there exists b ∈ R such that ab = ba = 1
A field is a commutative ring in which every non-zero element is invertible.
In any ring R, we have 0 · a = 0 for all a, (also a · 0 = 0 for all a ∈ R).
Proof:
Let a ∈ R, then 0 · a = (0 + 0) by property (3)
Then = 0 · a+ 0 · a by property (6)
By (4), we can choose b ∈ R such that 0 · a+ b = 0.
Then we have
0 · a = 0 · a+ 0 · a (as above)
0 · a+ b = (0 · a+ 0 · b) + b = 0 · a+ (0 · a+ b) by (1)
0 = 0 · a+ 0 since 0 · a+ b = 0.
∴ 0 = 0 · a by (3).
Note that we do have additive cancellation:
If a+ b = a+ c or if b+ a = c+ a, then b = c.
In general, we do not have multiplicative cancellation, (ab = ac does not imply
that b = c).
In a ring R, we say that a and b are zero divisors when a 6= 0, b 6= 0, a · b = 0.
Example:
Z6 we have 2 · 3 = 0.
The multiplicative cancellation rule is as follows:
For all a, b, c ∈ R, if ab = ac, then either a = 0 or a is a zero divisor or b = c.
An integral domain is a commutative ring with 1 with no zero divisors.
In an integral domain, R, for all a, b, c ∈ R, if ab = ac, then either a = 0 or
b = c.
Note that units are never zero divisors.
If u is a unit, say uv = vu = 1, then if we had u · b = 0, then we would have

0 = v · 0 = v(u · b) = (vu) · b = 1 · b = b

Example:
In Zn, the units are the elements in Un = {k ∈ Zn| gcd(k, n) = 1}. All other
elements are zero divisors. 0 6= k ∈ Zn, and gcd(k, n) 6= 1, we can choose a
prime p with p|k and p|n. Then if we write n = p · l, then k · l = 0.
In Mn(R), the units are the elements in

GLn(R) = {A ∈Mn(R)|det(A) 6= 0}

and all other non-zero elements are zero divisors since when detA = 0, we can
choose 0 6= u ∈ Rn such that Au = 0 and then AB = 0 where

B = (u, u, . . . , u) (or B (u, 0, 0, . . . , 0))

If F is a field, all non-zero elements are units and F has no zero divisors.
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If F is a field and R is a subring of F with 1 ∈ R, then R is an integral domain.
Note:
If an element a ∈ R has a left inverse and a right inverse, then these inverses
are equal to each other, so a is invertible.
(If ab = 1 and c · a = 1, then c = c · 1 = c (ab) = (ca) b = 1 · b = b)
Using addition and multiplication.
In the ring C0 (R,R) = {continuous functions f : R → R}. The units are the
functions f : R → R∗ (the functions such that f(x) 6= 0 for all x ∈ R and the
inverse of f is the function g : R→ R given by g(x) = 1

f(x) ).

Exercise:
Verify that the zero divisors are the functions f : R → R such that for some
a < b we have f(x) = 0 for all x ∈ [a, b].
A picture here.
Definition:
For a ring R with 1, the characteristic of R is

char(R) =

{
the smallest n ∈ Z+ for which n · 1 = 0

0 if no such n ∈ Z+ exists

Note:
If char(R) = n ∈ Z+, then we have n · a = 0 for all a ∈ R, because

0 = n · a = (1 + 1 + · · · 1) a

= (n · 1) a = 0 · a = 0

Exercise:
Verify that if R has no zero divisors, and if char(R) = n ∈ Z+, then n is prime.
Example:
char Z = char Q = char R = char C = 0 and char Zp = p.
Note:
When R is a ring and S ⊆ R is a subset of R, S is a subring when

0 ∈ S, S closed under +,−, and ×

That is, for all a, b ∈ S, we have a+ b ∈ S,−a ∈ S, and ab ∈ S.

26 November 13th

Chapter 9: Ring Homomorphisms and Quotient Rings
Definition:
When R and S are rings, a ring homomorphism from R to S is a function
φ : R → S such that φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) for all
a, b ∈ R.
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A ring isomorphism from R to S is a bijective ring homomorphism from R to
S. We say that R and S are isomorphic (as rings), and we write R ∼= S, when
there exists a ring isomorphism φ : R→ S.
Check that when φ is a homomorphism from R to S, we have φ(0) = 0.
If R has a 1 and φ is surjective, then S has a 1 and φ(1) = 1.
Examples:
φ : Z → Z× Z given by φ(k) = (k, 0) is a (non-surjective) ring homomorphism
and φ(1) = (1, 0) which is not equal to the identity element (1, 1) in Z× Z.
(Think about φ : Z → Z[i] given by φ(1) = 1 = (1, 0) where Z[i] = {(a, b)|a +
ib|a, b ∈ Z} ⊆ C.)
Check also that when K ⊆ R is a subring, φ(k) ⊆ S is a subring and when
L ⊆ S is a subring, φ−1(L) ⊆ R is a subring.
In particular,

Image(φ) = φ(R) ⊆ S is a subring

and
Ker(φ) = φ−1(0) ⊆ R is a subring

Check that φ is surjective ⇐⇒ Image(φ) = S
and φ is injective ⇐⇒ Ker φ = {0}.
Examples:
The subgroups of Z are of the form 〈n〉 = nZ where n ∈ N.
These are all subrings. Similarly, the subgroups of Zn are the groups

〈d〉 = dZn = {dk|k ∈ Z}

where d is a positive divisor of n. These are also subrings.
In Z[i], the subgroup generated by (2, 1) = 2 + i is

〈2 + i〉 = {k (2 + i) |k ∈ Z}

(which is a free abelian group).
Picture here.
Is this a subring of Z[i]?
It is not because, for example

(2 + i) (2 + i) = 3 + 4i

The smallest subring of Z[i] which contains (2, 1) = 2 + i is the ring

Span{(2 + i), (−1 + 2i)} = 〈2 + i,−1 + 2i〉 = (2 + i)Span{1 + i} = (2 + i)Z[i]

(which is also a free abelian group under +)
(Verify this!)
Examples:
In Q, the subgroup generated by 1

2 is 〈 12 〉 = 1
2Z = {k2 |k ∈ Z} and the smallest

subring of Q which contains 1
2 is{

k

2n

∣∣∣∣k ∈ Z, n ∈ N
}
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(Verify this!)
Quotient Rings
Note: When R is a ring and A ⊆ R is a subring, A is also a subgroup under
addition. And + is commutative, so A E R so we can form the quotient group

R/A = {r +A|r ∈ R}

with the operation given by

(r +A) + (s+A) = (r + s) +A

When can we define a product operation by

(r +A) · (s+A) = rs+A

to obtain a ring structure on R/A.
Exercise:
If A is closed under addition by ???
Theorem:
Let R be a ring and let A ⊆ R be a subring. Then we can define a well-defined
multiplication operation on the quotient group R/A = {r + A|r ∈ R} by the
formula (r +A) · (s+A) = rs+A if and only if A is closed under multiplication
by elements in R, that ar ∈ A and ra ∈ A for all a ∈ A and r ∈ R.
Proof:
To say that the operation

(r +A)(s+A) = rs+A

is well-defined means that for all r1, r2, s1, s2 ∈ R if r1+A = r2+A (equivalently
r2− r1 ∈ A) and s1 +A = s2 +A (equivalently s2− s1 ∈ A), then we must have
r1s1 +A = r2s2 +A.
(Or equivalently r2s2 − r1s1 ∈ A)
Suppose the operation is well-defined, let a ∈ A and r ∈ R. Then taking
r1 = r2 = r and s1 = 0 and s2 = a so that r2− r1 = 0 ∈ A and s2− s1 = a ∈ A,
we have r2s2 − r1s1 ∈ A, that is ra− r · 0 = ra ∈ A.
A similar argument shows that a · r ∈ A.
Suppose, conversely that A is closed under elements in R.
Let r1, r2, s1, s2 ∈ R, with r2− r1 ∈ A and s2− s1 ∈ A, say r2− r1 = a ∈ A and
s2 − s1 = b ∈ A.
Then

r2s2 − r1s1 = r2s2 − (r2 − a)(s2 − b)
= r2s2 − (r2s2 − r2b− as2 + ab)

= r2b+ as2 − ab
∈ A

As long as the operation is closed, then it is well-defined.
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Theorem
If A ⊆ R is a subring, then we can define an operation on R/A = {r+A|r ∈ R}
by (r + A)(s + A) = (r · s)A for r, s ∈ R if and only if A is closed under
multiplication (on the left and on the right) by elements in R.
In this case, R|A is a ring under (r+A)+(s+A) = (r+s)+A and (r+A)·(s+A) =
(r · s) +A

(r +A) ((s+A) + (t+A))

=(r +A) ((s+ t) +A)

=r(s+ t) +A

=(rs+ rt) +A

=(rs+A) + (rt+A)

=(r +A)(s+A) + (r +A)(t+A)

Definition:
An ideal in a ring R is a subring A ⊆ R which is closed under multiplication
by elements in R (that is, for all a ∈ A, r ∈ R, we have ar ∈ A and ra ∈ A)
When A ⊆ R is an ideal, the quotient R/A = {r + A|r ∈ R} is called the
quotient ring of R by A.
Check that the zero element in R/A is 0 +A = A.
Check that if R has a 1, then so does R/A, and the identity in R/A is 1 +A.
Check that if R has a 1 and r ∈ R is a unit then r + A is a unit in R/A with

(r +A)
−1

= r−1 +A.
Check that if R is commutative, then so is R/A.
Notation
When R is a ring and U ⊆ R is a subset, we could write

〈u〉 = SpanZU

to denote the smallest subgroup of R (under +) containing U .
We could write

[U ]

to denote the smallest subring of R containing U , and we could write

〈U〉 = (U)

to denote the smallest ideal in R containing U .
When R is a subring of S, and U ⊆ S is a subset, we could write

R[U ]

to denote the smallest subring of S containing R ∪ U (that R[U ] = [R ∪ U ])

69



When F is a subfield of K and U ⊆ K, we could write F (U) to denote the
smallest subfield of K which contains F ∪ U .
Examples:
For 1

2 ∈ Q, we have 〈
1

2

〉
=

1

2
· Z = {k

2
|k ∈ Z}[

1

2

]
= { k

2n
|k ∈ Z, n ∈ Z+}(

1

2

)
= Q

More generally, if F is a field then the only ideals in F are {0} and F.
Examples:
For 2 + 1 ∈ Z[i],

〈2 + i〉 = (2 + i)Z = {(2 + i)k|k ∈ Z}

[2 + i] = Span{2 + i,−1 + 2i}

(2 + i) = [2 + i] = Span{2 + i,−1 + 2i}

Picture here.
Examples:
For 2 ∈ Z[i]

〈2i〉 = 2iZ

[2i] = SpanZ{2i, 4}

Check if it is closed under multiplication

(4k + i2l)(4m+ i2n)

=(16km− 4nl) + i(8kn+ 8lm)

(2i) = SpanZ{2i, 2} = (2i)Z[i] = 2(Z[i]) = {2k + i2l|k, l ∈ Z}

Example:
In C,

Z[i] = {a+ bi|a, b ∈ Z}

Q[i] = {a+ ib|a, b ∈ Q}

Q(i) = Q[i]

(since Q[i] is already a field, because when a+ ib 6= 0, 1
a+ib = a

a2+b2 + i −ba2+b2 )
Theorem (The First Isomorphism Theorem)
When R and S are rings and φ : R → S is a ring homomorphism, and K =
Kerφ ⊆ R, K is an ideal in R and R/K ∼= φ(R).
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Indeed, the map Φ : R/K → φ(R) given by Φ(r +K) = φ(r) is as well defined
ring isomorphism.
Proof:
Exercise.
Good practice!!
There are also second, and third Isomorphism Theorems.
Note:
We can perform the following operations on ideals in a ring R:
If A,B ⊆ R are ideals, then so are the each of the followings:

1. A ∩B

2. A+B = {a+ b|a ∈ A, b ∈ B}

3. A ·B = {
∑n
i=1 ai · bi|n ∈ Z+, each ai ∈ A, each bi ∈ B} ⊆ A ∩B

(a+ b)r = ar + br
(
∑n
i=1 aibi) · r =

∑n
i=1 ai (bir)

In Z, the subgroups are of the form 〈n〉 = nZ with n ∈ N.
These are also subrings and ideals.
Given k, l ∈ Z (or in N), what are 〈k〉 ∩ 〈l〉, 〈k〉+ 〈l〉 and 〈k〉〈l〉

28 November 18th

Example:
Describe all ring homomorphisms φ : Z→ R where R is a ring.
Solution:
If φ : Z → R is a ring homomorphism, then φ is also a group homomorphism
(under +).
So φ is determined by the value φ(1) ∈ R.
If φ(1) = a ∈ R, then
for k ∈ Z,

φ(k · 1) = kφ(1) = ka

So we have φ = φa where φa : Z→ R given by φa(k) = k · a.
But also, for φ to be a ring homomorphism, we also need

a = φ(1) = φ(1 · 1) = φ(1) · φ(1) = a2

Thus, we must have φ = φa for some a in the ring with a2 = a.
An element a ∈ R with a2 = a is called idempotent.
Finally, note that if a ∈ R, with a2 = a, then the map φa : Z → R given by
φa(k) = k · a is a ring homomorphism because

φa(k + l) = (k + l)a = ka+ la = φa(k) + φa(l)
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and
φa(k · l) = (kl)a = kla2 = (ka)(la) = φa(k)φa(l)

Exercise:
Describe ring homomorphism φ : Z×Z→ R,φ : Zn → R and φ : Zn×Zm → R.
Example:
In Zn, the subgroups are of the form 〈d〉 = d·Zn where d|n, and these subgroups
are also subrings and ideals.
So the quotient Zn/d · Zn is a ring.
We can prove that when d|n, Zn/d · Zn ∼= Zd as follows.
Define φ : Zn → Zd by φ(k) = k. (That is φ(k mod n) = k mod d)
Then, φ is well-defined because if k = l mod n, then k = l mod d.
Also, φ is a ring homomorphism and φ is surjective.
By the Fisrt Isomorphism Theorem,

Zn/Ker(φ) ∼= Zd

(as rings)
For k ∈ Z, giving k ∈ Zn

k ∈ Ker(φ) ⇐⇒ φ(k) = 0 ∈ Zd
⇐⇒ k = 0 ∈ Zd
⇐⇒ k = 0 mod d

⇐⇒ d|k
⇐⇒ k ∈ dZn

Example:
Show that 2Z 6∼= 3Z as rings.
Note that 2Z ∼= 3Z as groups (both are infinite cyclic groups)
We can see that 2Z 6∼= 3Z as rings because in 2Z we have 2 + 2 = 4 = 2 · 2
But in 3Z, there is no element a ∈ 3Z such that a+ a = a · a (that is 2a = a2)
Example:
Show that Q[x]/(x2 − 2) ∼= Q[

√
2].

Solution:
Define φ : Q[x]→ Q[

√
2] by φ(f) = f(

√
2).

Note that when f ∈ Q[x], if f(
√

2) = A+B
√

2
then f(−

√
2) = A−B

√
2 (with A,B ∈ Q)

So if f(
√

2) = 0, then f(−
√

2) = 0.
So (x−

√
2) and

(
x+
√

2
)

are factors of f(x) (in R[x]).

So (x2 − 2) = (x−
√

2)(x+
√

2) is a factor of f(x) (in R[x] hence also in Q[x])
If f(
√

2) = 0, then (x2 − 2) is a factor of f(x).
So we can write f(x) = (x2 − 2)g(x) for some g ∈ Q[x]
Then f(x) = (x2 − 2) (the ideal geenrated by x2 − 2)
Conversely, if f ∈ (x2− 2), then (since (x2− 2) = {(x2− 2)g(x)|g ∈ Q[x]} ), we
have f(x) = (x2 − 2)g(x) for some g(x) ∈ Q[x].
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Hence, f(
√

2) = 0.
Side Note:
More generally, if a ∈ R and R is commutative with 1, then (a) = a · R =
{ar|r ∈ R}.
ar + as = a(r + s), ar · as = a(ars), (a · r)s = a(rs)
Side Note ends
This shows that Ker(φ) = {f ∈ Q[x]|f(

√
2) = 0} = (x2 − 2)

Since φ : Q[x] → Q[
√

2] is a surjective ring homomorphism with Ker(φ) =
(x2 − 2), it follows that

Q[x]/(x2 − 2) ∼= Q[
√

2]

Example:
Show that Z[i]/〈2 + i〉 ∼= Z5

Solution:

〈2 + i〉 = (2 + i)Z[i] = {(2 + i)(k + il)|k, l ∈ Z}
= {(2 + i)k + (−1 + 2i)l|k, l ∈ Z}
= SpanZ{(2 + i), (−1 + 2i)}

Picture here.
As a group, we saw (informally) that Z[i]/Span{(2 + i), (−1 + 2i)} ∼= Z5

Cosets, shifting left or right.
(1, 1) +H is a generator.
To prove (rigorously) that Z[i]/(2 + i) ∼= Z5 as rings, we find a surjective ring
homomorphism φ : Z[i]→ Z5 with Ker(φ) = 〈2 + i〉
Picture revised here.
Define φ : Z[i]→ Z5 by φ(a+ ib) = 2b− a(mod 5).
φ is clearly well-defined and surjective.
φ is a ring homomorphism because for a, b, c, d ∈ Z,

φ ((a+ ib) + (c+ id)) = φ ((a+ c) + i (b+ d))

= 2(b+ d)− (a+ c)

= (2b− a) + (2d− c)
= φ(a+ ib) + φ(c+ id)

φ ((a+ ib) (c+ id)) = φ((ac− bd) + i(ad+ bc))

= 2(ad+ bc)− (ac− bd)

= 2ad+ 2bc− ac+ bd
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φ(a+ ib) · φ(c+ id) = (2b− a)(2d− c)
=

29 November 20th

Example:
Show that Z[i]/(2 + i) ∼= Z5 as rings.
Solution:
Define φ : Z→ Z5 by φ(a+ ib) = a− 2b = a+ 3b ∈ Z5

Then, φ is clearly well-defined and surjective
Note that φ is a ring homomorphism because for a, b, c, d ∈ Z

φ((a+ ib) + (c+ id)) = φ((a+ c) + i(b+ d))

= (a+ c) + 3(b+ d)

= (a+ 3b) + (c+ 3d)

= φ(a+ ib) + φ(c+ id)

and

φ((a+ ib) · (c+ id)) = φ((ac− bd) + i(ad+ bc))

= (ac− bd) + 3(ad+ bc)

φ(a+ ib) · φ(c+ id) = (a+ 3b) · (c+ 3d)

= ac+ 3ad+ 3bc+ 9bd

= ac+ 3ad+ 3bc− bd ∈ Z5

Since 9 = −1
By the First Isomorphism Theorem,

Z[i]/Ker(φ) ∼= Z5

We claim that Kerφ = (2 + i)
(Recall that when R is a commutative ring with 1 and a ∈ R, we have (a) =
a ·R = {ar|r ∈ R})
In Z[i],

(2 + i) = (2 + i)Z[i]

= {(2 + i)(k + il)|k, l ∈ R}
= {(2 + i)k + (−1 + 2i)l|k, l ∈ Z}
= SpanZ{2 + i,−1 + 2i}
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If a+ ib ∈ (2 + i) = SpanZ{2 + i,−1 + 2i}
say a+ ib = (2 + i)k + (−1 + 2i)l = (2k − l) + i(k + 2l)

φ(a+ ib) = a+ 3b = (2k − l) + 3(k + 2l)

= 5k + 5l = 0 ∈ Z5

φ(a+ ib) = a+ 3b ∈ Z5

Suppose that φ(a+ ib) = 0, that is a+ 3b = 0 ∈ Z5.
We need to show that there exist k, l ∈ Z such that

(a+ ib) = (2 + i)k + (−1 + 2i)l = (2k − l) + i(k + 2l)

We need [
a
b

]
=

[
2 −1
1 2

] [
k
l

]
That is [

k
l

]
=

1

5

[
2 1
−1 2

] [
a
b

]
=

[
(2a+ b)/5

(−a+ 2b)/5

]
Since a+ 3b = 0 mod 5

0 = −(a+ 3b) = (−a− 3b)

= −a+ 2b mod 5

and

0 = 2(a+ 3b) = 2a+ 6b

= 2a+ b mod 5

So the values k, l above lie in Z.
Example:
Let R be a commutative ring with 1.
We define the evaluation map

φ : R[x]→ Func(R,R) = RR

by φ(f) = f
(So φ sends the polynomial f(x) =

∑n
k=0 akx

k, where each ak ∈ R, to the
function f : R→ R given by f(x) =

∑n
k=0 akx

k)
Example:
For f(x) = x2 + x ∈ Z2[x], we have 0 6= f(X) ∈ Z2[x], but f(x) = 0 for all
x ∈ Z2.
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When R is commutative, φ is a ring homomorphism.
(When R is not commutative, its not in R[x]

(a+ bx)(c+ dx) = (ac) + (ad+ bc)x+ bdx2

but in RR

(a+ bx)(c+ dx) = ac+ adx+ bxc+ bxdx

)
When R is an infinite field (or an infinite integral domain), the evaluation map
φ is injective.
(For f ∈ R[x], φ(f) = 0 ∈ RR, so f(x) = 0 for all x ∈ R)
We must have that f = 0 ∈ R[x] since a non-zero polynomial of degree n can
only have at most n roots.)
The image of φ in RR is called the ring of polynomial functions on R.
If R is a finite field, then φ is not injective (Since R[x] is infinite but RR is
finite.)
But, instead, φ is surjective:
Indeed, if R = {a1, a2, . . . , an}, then given b1, b2, . . . , bn ∈ R
We can construct a polynomial function R → R with f(ai) = bi for all i as
follows.
For each 1 ≤ k ≤ n, let

gk(x) =

∏
i 6=k(x− ai)∏
i 6=k(ak − ai)

Thus, gk(al) =

{
1 if l = k

0 if l 6= k

n∑
k=1

bkgk(al)

=
∑

bkδk,l

=bl

So we can take

f(x) =

n∑
k=1

bkgk(x)

We have the evaluation map φ : R[x] → RR. The ring of the polynomial maps
is

φ(R[x]) ∼= R[x]/Ker(φ)

When R is a finite field with |R| = n.
Show, as an exercise, that

Kerφ = (xn − x)

(Since R∗ = R \ {0} is a group with n− 1 elements.
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So xn−1 = 1 for all x ∈ R by Lagrange’s Theorem.
Hence, xn = x for all x ∈ R.)
In algebraic geometry, we study varieties, when S ⊆ F[x1, . . . , xn] with F a
field.
The variety of S is

V (S) = {x ∈ Fn|f(x) = 0 for all f ∈ S}

When f ∈ F[x1, . . . , xn], we write

V ({f}) = V (f)

Photos Here.
Given X ⊆ Fn, the ideal of X is the ideal

I(X) = {f ∈ F[x1, . . . , xn]|f(x) = 0 for all x ∈ X}

The ring of polynomial functions A(X) on a variety X is the ring of functions
f : X → R such that there is a polynomial p ∈ F[x1, . . . , xn] for which f(x) =
p(x) for all x ∈ X.
We have the evaluation map

φ : F[x1, . . . , xn]→ FX = {f : X → F}

A(X) = Image(φ)
∼= F[x1, . . . , xn]/Kerφ

Show that Kerφ = I(X)

30 November 22nd

When X is a set and R = P(x) = {A|A ⊆ X}, we define

A+B = (A ∪B) \ (A ∩B)

A ·B = A ∩B

A picture here.
Chapter 10 Factorization in Commutative Rings
Example
Solve ax+ by = d = gcd(a, b)
If p is irreducible, then

p|ab⇒ (p|a) or p|b

p1p2 . . . pl = q1q2 . . . qm, p1|qi for some i.
Definition:
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Let R be a commutative ring with 1. For a, b ∈ R, we say a divides b, or a is
a factor of b, or b is a multiple of a, and we write a|b when b = ac for some
c ∈ R.
For a, b ∈ R, we say that a and b are associates and we write a ∼ b, when a|b
and b|a.
Exercise:
Verify each of the following:

1. a|0 for all a, and 0|a ⇐⇒ a = 0.

2. 1|a for all a ∈ R, and a|1 ⇐⇒ a is a unit.

3. a|b ⇐⇒ b ∈ (a) ⇐⇒ (b) ⊆ (a)

4. Association is an equivalence relation.

5. For a, b ∈ R, a ∼ b ⇐⇒ (a) = (b)
⇐⇒ a and b have the same divisors and the same multiples

Definition:
In a commutative ring, R, with 1, a principle ideal is the ideal of the form

A = (a) = {ar|r ∈ R}

for some a ∈ R.
Exercise:
Show that when R is a commutative ring with 1 and a, b ∈ R, we have (a)(b) =
(ab).
Proof:

(a)(b) = {
n∑
i=1

(a · ri)(b · si)|ri, si ∈ R}

= {ab

(
n∑
i=1

risi

)
|ri, si ∈ R}

= {ab · t|t ∈ R} = (ab)

Definition
Let R be a commutative ring with 1.

1. An element in a ring, a ∈ R, we say a is reducible when a is a non-zero,
non-unit, such that a = b · c for some non-units b, c ∈ R.

2. For a ∈ R, we say that a is irreducible when a is a non-zero, non-unit
and for all b, c ∈ R, if a = b · c, then either b is a unit or c is a unit.

3. For p ∈ R, we say that p is prime when it has the property that for all
a ∈ R, if p|ab, p is a non-zero, non-unit, then p|a or p|b.
(In integer, irreducible and prime are the same thing.)
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Exercise:
Verify the following:
If R is a commutative ring with 1 and a, b ∈ R with a ∼ b,

a = 0 ⇐⇒ b = 0

a is a unit ⇐⇒ b is a unit

a is reducible ⇐⇒ b is reducible

a is irreducible ⇐⇒ b is irreducible

a is a prime ⇐⇒ b is a prime

If R is an integer domain (So R is commutative with 1 and R has no zero
divisors), then every prime in R is irreducible.
Proof:
Let p ∈ R be prime. (So for all a, b ∈ R, if p|ab, then p|a or p|b)
Suppose p = a · b, where a, b ∈ R. (We need to show that a is a unit or b is a
unit)
Since p = ab, we have p|ab, so either p|a or p|b.
Suppose p|a, say a = p · u where u ∈ R
Then p = ab = p · u · b
∴ p− pub = 0
∴ p · 1− pub = 0
∴ p(1− ub) = 0
Since R has no zero divisors and p 6= 0, 1− ub = 0.
Thus, u · b = 1.
So b is a unit.
Similarly, if p|b, then a is a unit.
Example:
In Z12, the association classes are {0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}.
The primes in Z12 are 2 and 3. (and their associates)
Multiplication table here. See picture.
and the reducible elements are

3, 4, 6

(and associates)
and the irreducible elements are

2

(and associates) (that is 10)
Note that 3 reduces as

3 = 3 · 9 = 3 · 3 · 3 = 3 · 3 · 3 · 3 · 3 = . . .

Definition:
A Euclidean domain (or ED) is an integral domain, R, together with a func-
tion, N : R \ {0} → N = {0, 1, 2, . . . } (Called the Euclidean norm on R) such
that for all a, b ∈ R with b 6= 0)
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There exist q, r ∈ R, such that a = b · q + r and either r = 0 or N(r) < N(b)
Examples:
Z is a ED with Euclidean norm given by N(k) = |k|.
When F is a field, F is a ED and any function N : F \ {0} → N is a Euclidean
norm.
When F is a field, the polynomial ring F[x] is a Euclidean domain with norm
given by N(f) = deg(f).
Definition:
A principal ideal domain or PID is an integral domain in which every ideal
is principal.
Every Euclidean domain is a principal ideal domain.

31 November 25th

a|b when b = ac for some c.
a|b ⇐⇒ b ∈ (a) ⇐⇒ (b) ⊆ (a)
a ∼ b when a|b and b|a ⇐⇒ (a) = (b)
We say that a is irreducible when a is a non-zero, non-unit and a = b · c ⇐⇒
b is a unit or c is a unit
a is prime when a is a non-zero, non-unit and a|bc⇒ (a|b or a|c)
R is a Euclidean Domain when R is an integral domain with a function N :
R {0} → N (called a Euclidean Norm on R) such that for all a, b ∈ R, with
b 6= 0. There exists a quotient remainder, q, r ∈ R such that a = qb + r with
r = 0 or N(r) < N(b).
R is a principal ideal domain when R is an integral domain and every ideal is a
principal ideal. (For every ideal A in R, A = 〈a〉 for some a ∈ R).
Example:
Z,Zn,F,F[x]
Z[x] is not a P.I.D.
For example,

〈2, x〉 = {f(x) =

n∑
k=0

ckx
k|c0 is even}

is not principal.
Example:
F [x, y] is not a PID
For example,

〈x, y〉 = {f(x, y) =
∑

ck,lx
kyl|c0,0 = 0}

= {f ∈ F [x, y]|f(0, 0) = 0}

is not principal.
A unique factorization domain, or a U.F.D, is an integral domain R in which
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1. Every non-zero, non-unit a ∈ R can be written as a product

a = a1a2 . . . al

where l ∈ Z+ and each ai is irreducible.

2. For a ∈ R, if a = a1a2 . . . al = b1b2 . . . bm where l,m ∈ Z and each ai and
bj is irreducible. Then l = m, and there is a permutation σ ∈ Sl such that
ak ∼ bσ(k) for all k. (Up to order and up to association.)

Example:
Z is a UFD when F is a field. F[x] is a UFD.
Z[
√

3] = {a+ b
√

3i|a, b ∈ Z} ⊆ C is not a UFD.
Example:

(1 +
√

3i)
(

1−
√

3i
)

= 4 = 2 · 2

and 1 ±
√

3i and 2 are irreducible because if we define N(u) = ||u||2 for u ∈
Z[
√

3i].
So N(a+ b

√
3i) = a2 + 3b2 ∈ N

Then N(uv) = N(u) ·N(v).
So u = 0 ⇐⇒ N(u) = 0
u is a unit ⇐⇒ N(u) = 1.
If w is reducible with w = u · v, with u, v non-units. Then N(w) is composite
with N(w) = N(u)N(v)
So if 1 ±

√
3 or 2 were reduced, they would necessarily factor into elements of

norm 2, and there are no such elements in Z[
√

3i].
Also, 1±

√
3i and 2 are not associates since association differ by multiplication

by a unit and the only units are ±1.
Our goal is to show that every Euclidean Domain (ED) is a principal ideal
domain (PID), and that every PID is a UFD.
Theorem:
Every Euclidean Domain (ED) is a principal ideal domain (PID).
Proof:
Let R be a Euclidean Domain with N : R \ {0} → N.
Let A be an ideal in R.
If A = {0}, then A = (0)
Suppose A 6= {0}. Choose an element in the ideal, 0 6= u ∈ A of smallest
possible norm.
(Using Well-Ordering Property).
We claim that the ideal is generated by 1 element, A = (a).
Since a ∈ A, we have (a) ⊆ A.
Write b = q · a+ r with r = 0 or N(r) < N(a).
Since r = b− q · a ∈ A as b ∈ A
We cannot have N(r) < N(a) as we chose a to be the minimum.
So we must have r = 0.
Thus, b = q · a ∈ (a).
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and so A ⊆ (a).
Example:

Determine whether Z[ 1+
√
19i

2 ] is a PID but not a ED. (using any norm).
To prove that every PID is a UFD. We use two lemmas.
Definition:
A ring, R is called Noetherian when it has the property that for any ascending
chain of ideals

A1 ⊆ A2 ⊆ A3 ⊆ . . .

in R, there exists n ∈ Z+ such that Ak = An for all k ≥ n.
Lemma I:
Every PID is Noetherian.
Proof:
Let a1, a2, a3 ∈ R with

(a1) ⊆ (a2) ⊆ (a3) ⊆ . . .

Note that
⋃∞
k=1(ak) is an ideal.

Choose a ∈ R so that
⋃∞
k=1(ak) = (a).

Since a ∈
⋃∞
k=1(ak), we have a ∈ (an) for some n ∈ Z.

Then, for k ≥ n, we have (ak) ⊆
⋃∞
j=0(aj) = (a) ⊆ (an) ⊆ (ak)

and so (ak) = (an).
Remind: In an integral domain, every prime element is irreducible.
Lemma II:
Let R be a PID. Let a ∈ R.

1. If a is irreducible then (a) is maximal amongst proper ideals. (This means
that for b ∈ R, if (a) ⊆ (b) ⊆ R. (If and only if statement. Prove the
other direction for yourself. Converse might need non-unit and non-zero?)
Then, either (b) = (a) or (b) = R.)

2. If a is irreducible, then a is prime.

Proof:
Let a ∈ R be irreducible. Since a is a non-zero, non-unit. (a) 6= {0} and
(a) 6= R.
Let b ∈ R with (a) ⊆ (b) ⊆ R.
Since (a) ⊆ (b), we have b|a, say a = b · c with c ∈ R.
Since a is irreducible, either b is a unit or c is a unit.
If b is a unit, then (b) = R.
If c is a unit, then since a = b · c, we have a ∼ b.
So (a) = (b).
Part 2 as an exercise.
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32 November 27th

If R is a Euclidean Domain.
Every Euclidean Domain is a principal ideal domain.
Lemma II
Proof:
Let a ∈ R, a irreducible.
Let b, c ∈ R with a|bc.
Suppose a 6 | b, so b /∈ (a).
Then (a) ⊂ (a) + (b) = {ar + bs|r, s ∈ R}
Since a is irreducible, by Part (1), (a) is maximal amongst proper ideals in R.
So (a) + (b) = R.
In particular, 1 ∈ (a) + (b) = {ar + bs|r, s ∈ R}
Say 1 = ar + bs.
Then c = c · 1 = c(ar + bs) = a · cr + bc · s ∈ (a)
As a ∈ (a) and bc ∈ (a) since a|bc.
Since c ∈ (a), we have a|c.
Thus, a is prime.
Theorem:
Every PID is a UFD.
Proof:
Let R be a PID. Let a ∈ R be a non-zero, non-unit.
We claim that a has an irreducible factor in R.
Let a ∈ R be a non-zero, non-unit.
If a is irreducible, then we are done since a|a.
Suppose that a is reducible, say a = a1b1 where a1 and b1 are non-units.
Note that (a) ⊂ (a1) indeed since a1|a, we have (a) ⊂ (a1) and since b1 is not a
unit.
a and a1 are not associates.
(If we had a ∼ a1, say a = a1 · u where u is a unit, then since a = a1b1, so
a1u = a1b1, so b1 = u by cancellation.)
If, a1 is irreducible, we are done. (since a1|a).
Suppose a1 is reducible, say that a1 = a2b2 where a2 and b2 are non-units.
Note that as above, (a1) ⊂ (a2).
If a2 is irreducible, we are done, and otherwise we repeat the procedure above.
The procedure has to end afte finitely many steps because the ring is Noetherian.
(by Lemma I).
and

(a) ⊂ (a1) ⊂ (a2) ⊂ . . .

We next claim that we can factor non-zero, non-units completely into irre-
ducibles.
We can write a = a1a2 . . . al for some l ∈ Z+ and some irreducible elements
ai ∈ R.
If a is already irreducible, then there is nothing to prove. (Since a|a)
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Suppose a is reducible, by our previous claim, we can choose an irreducible
factor a1 of a.
Say a = a1 · b1.
Note that b1 cannot be a unit. (Since if b1 was a unit, we could have a ∼ a1,
but a is reducible and a1 is not.)
As above, we have

(a) ⊂ (b1)

If b1 is irreducible, we are done. (Taking a2 = b1)
Suppose that b1 is reducible, choose an irreducible factor, a2 of b1 and write
b1 = a2b2
As above, b2 must be a non-unit.
And we have (b1) ⊂ (b2), if b2 is irreducible, we are done. (Taking a3 = b2 so
a = a1a2a3)
Otherwise, repeat.
The procedure must end after finitely many steps because R is Noetherian.
Finally, we claim that if a = a1a2 . . . al = b1b2 . . . bm where l,m ∈ Z+, and
each ai and each bj is irreducible, then l = m. and after reordering the bj , if
necessary, we have ai = bi for all 1 ≤ i ≤ l.
Since a1 is irreducible, by Lemma II, it is also prime.
Since a1|a, that is a1|b1b2 . . . bm, by the prime property and induction, we must
have ai|bj for some j.
After reordering, we can say that a1|b1.
Because b1 is irreducible, by the definition of irreducible, we cannot factor this
into non-zero, non-units.
The only factors of b1 are the units in R and the associates of b1 in R.
Since a1 is not a unit, and a1|b1, a1 ∼ b1, say b1 = a1 · u where u is a unit in R.
Then

a1a2 . . . al = b1b2 · · · bm
= a1u · b2 · b3 . . . bm

So a2a3 . . . al = u · b2 · b3 . . . bm
By cancellation, (and ub2 is irreducible).
By a suitable induction hypothesis, the proof is done. l = m, after reordering,
ai ∼ bi for 2 ≤ i ≤ l = m.
Examples:
To study the problem of whether the ring

Z[
√
di] is a UFD

where d ∈ Z+, it is useful to consider the , field norm on Q[
√
di] given by

N(z) = ||z||2, that is N(a+ b
√
di) = a2 + db2 ∈ Q

Note that for z ∈ Q[
√
di] (or even for z ∈ C, z = 0 ⇐⇒ N(z) = 0)

For z, w ∈ Q[
√
di] (or for z, w ∈ C )

N(zw) = N(z) ·N(w)
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For z ∈ Z[
√
di], N(z) ∈ N.

It follows that for z ∈ Z[
√
di], z is a unit ⇐⇒ N(z) = 1.

Examples:
We already used that above field norm to show that Z[

√
3i] is not a UFD.

(1 +
√

3i)(1−
√

3i) = 4 = 2 · 2
and 1±

√
3i and 2 are irreducible.

And 1±
√

3i and 2 are not associates.

1±
√

3i 6∼ 2

.
Picture here.
Example:
Show that Z[

√
2i] is a ED (hence also a PID and UFD).

And the field norm
N(z) = ||z||2

is also a Euclidean norm.
Solution:
Let z, w ∈ Z[

√
2i] with w 6= 0.

z = w · q + r

N(r) < N(w)

We have z
w ∈ Q(

√
2i)

Say z
w = x+ y ·

√
2i with x, y ∈ Q,

Choose a, b ∈ Z with

|x− a| ≤ 1

2
and

|y − b| ≤ 1

2

Let q = a+ b
√

2i, and r = z − wq.
Then

N(r) = ||r||2 = ||z − wq||2

= ||w||2|| z
w
− q||2

= ||w||2||(x− a) + (y − b)
√

2i||2

≤ ||w||2
(
||x− a||2 + 2||y − b||

)
≤ ||w||2

(
1

4
+

2

4

)
=

3

4
||w||2

=
3

4
N(w)2
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So N(r) < N(w).
Exercise:
Show that Z[ 1+

√
19

2 ] is a PID but not a ED.

33 November 29th

Example: Z[x] are F[x, y] are UFD’s but not a PID’s.
(The proof that Z[x] and F[x, y] are UFD’s is at the end of the last chapter.)
Examples:

Show that R = Z[ 1+
√
19i

2 ] is a PID but not a ED.
Solution:
Suppose for a contradiction, that R = Z[ 1+

√
19i

2 ] is a ED with Euclidean norm
N : R \ {0} → N.
Remark:
If all the non-zero elements in R were units, then R would be a field, so it would
be a ED.
We can draw a picture of the ring.
Picture here.
Check that the only units in R are ±1
Choose a non-zero, non-unit a ∈ R, a /∈ {0,±1} of smallest possible Euclidean
norm.
By the definition of a Euclidean norm for all x ∈ R, we can choose q = q(x), r =
r(x) ∈ R such that x = q · a+ r with r = 0 or N(r) < N(a).
Taking x = 2, we see that there exists

2 = qa+ r

for some q ∈ R and some r with r = 0 or N(r) < N(a)
By our choice of a, we must have r ∈ {0,±1}, so qa = 2 + r with r ∈ {0,±1},
that is q · a ∈ {1, 2, 3}
Since a divides one of the elements 1, 2, 3, we must have

a = ±1,±2,±3

and a 6= ±1 so a ∈ {±2,±3}.
Taking x = 1+

√
19i

2 , we have

1 +
√

19i

2
= qa+ r

for some r ∈ {0,±1}.
So qa = 1+

√
19i

2 − r for some r ∈ {0,±1}, that is

q · a ∈ {−1 +
√

19i

2
,

1 +
√

19i

2
,

3 +
√

19i

2
}
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So a must have a factor of one of the elements

−1±
√

19i

2
,

1 +
√

19i

2
,

3 +
√

19i

2

But±2,±3 are not factors (Since ||−1+
√
19i

2 ||2 = || 1+
√
19

2 ||2 = 5 and || 3+
√
19i

2 ||2 =
7)
This gives the desired contradiction.

We sketch a proof that R = Z[ 1+
√
19i

2 ] is a PID.
Let A be any ideal in R.
If A = {0}, then A = (0).
Suppose A 6= {0}
Choose a non-zero element 0 6= a ∈ A of smallest possible field norm ||a||2.
We claim that A = (a).
Since a ∈ A, we have (a) ⊆ A.
Let b ∈ A be arbitrary.
Picture here.
By adding an integer multiple of a and 1+

√
19i

2 a to b.
We obtain a point c ∈ A which lies in the parallelogram with vertices at

0, a1+
√
19i

2 a, 3+
√
19i

2 a.

Also, c− 0, c− a, c− 1+
√
19i

2 a and c− 3+
√
19i

2 a ∈ A.
By our choice of a, if c is not equal to one of these vertices, then

||c− v||2 < ||a||2

for all 4 vertices v.
If c 6= v for any of the four v, then c must lie in the shaded region.
Picture here.
Thus, 2c ∈ A lies in the larger shaded region.
But all the points in the larger shaded region close to one of the points.

1 +
√

19i/2, 3 +
√

19i/2, 5 +
√

19i/2

to within a distance of ||a||.
Picture here.
Thus, if c is not one of the vertices of the parallelogram, 2c would be equal to
one of the point

1 +
√

19i

2
a,

3 +
√

19i

2
a,

5 +
√

19i

2
a

So that

c =
1 +
√

19i

4
a,

3 +
√

19i

4
a,

5 +
√

19i

4
a

Play with these points to obtain a contradiction.
Note:
To study rings of the form Z[

√
di] with d ∈ Z+, it is useful to make use of the

”field norm”.
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In Q[
√
di] given by N(z) = ||z||2, that is

N(a+ b
√
di) = a2 + db2

To study rings Z[
√
d] where d ∈ Z+ (with d not a perfect square.)

It is useful to use the ”field norm” in Q[
√
d] given by N(a + b

√
d) = a2 − db2

(or by N(a+ b
√
d) = |a2 − db2|)

34 December 2nd

Remark:
In a ring, R,

a ∼ b ⇐⇒ (a) = (b)

a|b ⇐⇒ (b) ⊆ (a)

m is irreducible, ⇐⇒ (m) is maximal amongst proper principal ideals.
P is prime ⇐⇒ p|ab⇒ p|a or p|b

(a)(b) = (ab) ⊆ (q)⇒ ((a) ⊆ (p) or (b) ⊆ (p))

Definition:
Let R be a commutative ring with 1.

1. For ideals A and B in Rsometimes we write A|B when B ⊆ A.

2. For an ideal M in R, we say that M is maximal when it is maximal
amongst all proper ideals, that is M ⊂ R and for all ideals A in R.

If M ⊆ A ⊆ R, then either A = M or A = R.

3. For a proper ideal P in R, we say that P is prime when P ⊂ R and for
all ideals A,B in R.

If AB ⊆ P , then either A ⊆ P or B ⊆ P .

Note:
For an ideal P with a commutative ring with 1, P is prime ideal if and only if
P has the property that for all a, b ∈ R, if a · b ∈ P , then (a ∈ P or b ∈ P ).
Proof:
Suppose P be a prime ideal in R, let a, b ∈ R with a · b ∈ P .
Then

(a)(b) = (ab) ⊆ P

(Commutative used here)
So since P is prime, either (a) ⊆ P or (b) ⊆ P .
If (a) ⊆ P , then a ∈ P while if (b) ⊆ P , then b ∈ P .
Conversely, let P be any proper ideal and suppose that for all a, b ∈ R, if ab ∈ P ,
then (a ∈ P or b ∈ P ).
Let A and B be ideals in R with AB ⊆ P .
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Suppose A 6⊆ P and choose a ∈ A with a /∈ P .
Let b ∈ B be arbitrary.
Then a · b ∈ AB ⊆ P .
Then either a ∈ P or b ∈ P .
But a /∈ P , so b ∈ P .
Thus, B ⊆ P as required.
Theorem:
Let R be a commutative ring with 1.

1. For an ideal M ∈ R, M is maximal iff R|M is a field.

2. For an ideal P in R, P is prime iff R|P is an integral domain.

Proof:

1. Suppose M is maximal.

Since M ⊂ R, we have a /∈M .

So 1 +M 6= 0 +M in R|M .

Since R is commutative, so is R|M , let a ∈ R with a /∈M so that a+M 6=
0 +M ∈ R|M .

Since a /∈M , we have

M ⊂M + (a) = {m+ ar|r ∈ R,m ∈M}

Because M is maximal, we have M + (a) = R.

So in particular, 1 ∈M + (a), so we can say

1 = m+ a · r

where m ∈M, r ∈ R.

Then, we have
ar +M = 1 +M

That is,
(a+M)(r +M) = 1 +M

and so a+M is invertible (with inverse r +M).

Suppose, conversely, that R|M is a field.

Since 0 +M 6= 1 +M in R|M .

We have 1 /∈M so M ⊂ R.

Let A be any ideal in R with M ⊂ A, we need to prove that A = R.

Since M ⊂ A, we can choose a ∈ A with a /∈ M , then a+M 6= 0 +M ∈
R|M .

So a+M has an inverse in R|M .
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Say
(a+M)(b+M) = 1 +M

where b ∈ R.

Then
ab+M = 1 +M

So 1− ab = m for some m ∈ M , hence 1 = ab + m ∈ A. (Since a ∈ A so
a · b ∈ A and m ∈M ⊆ A)

Since 1 ∈ A, we have A = R, as required.

2. Let P be an ideal in R.

Suppose R|P is an integral domain. (No zero divisors).

Since R|P is an integral domain,

0 + P 6= 1 + P

So 1 /∈ P .

Hence P ⊂ R.

Let a, b ∈ R with ab ∈ P .

Since ab ∈ P , ab+ P = 0 + P ∈ R|P

(a+ P )(b+ P ) = 0 + P ∈ R|P

Since R|P has no zero divisors, we can say that either the element a+P =
0 + P or b+ P = 0 + P in R|P .

Hence, either a ∈ P or b ∈ P .

Thus, P is prime.

Converse is left as a exercise.

Example:
When F is a field, and f ∈ F[x] is irreducible (in the polynomial ring F[x])
F[x] is a E.D. (Hence a PID)
Since f is irreducible,

(f) is maximal amongst proper principal ideals

Hence among proper ideals, so (f) is a maximal ideal in F[x].
Thus, F[x]/〈f〉 is a field.
(If a is a root of f(x) in a bigger field, then F(a) = F[a] ∼= F[x]/(a))
Example:
Photo here.
Z[
√

3i] is not a UFD.
For example,

(1 +
√

3i)(1−
√

3i) = 4 = 2 · 2
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and 1±
√

3i and 2 are irreducible and 1±
√

3i are not associates of 2.
But Z[

√
3i] ⊆ Z[ 1+

√
3i

2 ] and Z[ 1+
√
3i

2 ] is a ED with Euclidean norm

N(z) = ||z||2

In Z[
√

3i], we have 1±
√

3i ∼ 2.
Example:
Z[
√

5i] is not a UFD

(1 +
√

5i)(1−
√

5i) = 6 = 2 · 3

2 is irreducible. (2) is maximal among principal proper ideals.
But

(2) ⊂ (2, 1 +
√

5i)

Verify that
(
2, 1 +

√
5i
) (

2, 1 +
√

5i
)

= (2).
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