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1 September 9th

Defined group, rings and field

1.8 Theorem: (Cancellation)

Proof of 2

Let a,b € G, suppose ab = b, (the case ba = b is similar)
Then

ba =10
ba = be
a=eby (1)
Proof of 3
Let a,b € G
Suppose ab = e.
Then
(ab)b™! =eb™!
a(b™!) =eb™?
ae = eb™?
a=>b"1
ba=b-b""!
ba=e

Remark the above rules does not hold in rings in general
eg, in Z12,3-2=23-6 but 2 #£ 6.

and 3-9 =3 but 9 # 1.

eg. Let RY = {(a1, ag,...)| each ar € R} and let

R = End(R*) = Hom(R*,R%)
= {linear maps L : R“ — R“}



under addition and composition
Let L be given by

L(al, az, as, ) = (CLQ, as, a4, )
and let R be given by

R(a1,a9,as,...) = (0,a1,a9,as,...)

Then LR = 1.

but RL # I.

Subgroups

eg. In C* we have the subgroups

The section below is in notes actually.

Cn={z € C*|z" =1}, where n € Z*}
— {ei27rk/n|k_ c Zn}

Coo= J Cn
nezt
={z€C*z" =1 for somen € Z"}

S’ = {z € C*||z| = 1}

When R is a commutative ring with 1, we have the following subgroups of the
general linear group

GL,(R) = {A € M, (R)|A is invertible }
={A € M,(R)|det A is a unit in R}

The special linear group

SLn(R) = {A € GL,(R)|det A = 1}

eg.
Os(R) = {(u,v)|u € R* v € R? |u| = 1, |v| = 1,u-v = 0}
cosf) —sinf cosf)  sinf
_{{sine cos@}’[sinﬂ cos@] GGR(OTHE[O’QT])}
= {R97F9|9 S R}
here Ry — cos) —sind _ |cos@  sind
WRETC 110 = 1 6ing  cosh |7 %~ |sind —cosd



2 September 11th raw notes

OQ(R) = {R@,Fgw S R}

Ry: rotation Fy: reflection

Let us find a matrix formula for the rotation in R? about O = (0,0) by 6.
(counterclockwise)

See Pictures

Let’s find a matrix formula for the reflection Fy in the line in R2?, through
0 = (0,0), which makes the angle g with the positive x-axis.

Solution:

When L has normal unit vector n,*

When L is the line through o which makes the angle g with

See Pictures.

On(R) = {A € Mn(R)aATA = I} < GLn(R)

1.32 Theorem: (The Subgroup Test I)

Theorem: Subgroup Test I

Proof:

In order for H to be subgroup, we need (2) to hold so that * restricts to give a
well-defined operation or H. If H has an identity elements ey, then ey x ey =
FEg is inclusive.

Then Gy * GginP So ey +eg = ey in G Gy = eg by cancellation

If a € H has an inverse in H, say axb=0b*a =e¢ in H.

THen we also have a *b=b=+a in G.

So must have b=a"!in G

Thus, for H to be a subgroup of G, properties (1), (2), and (3) hold.

When (1), (2), and (3) hold, note that * is automatically associative in H
because it is associative in G.

So H is a subgroup of G.

Remark, when R is a ring with identity 1z and S is subring of R with identity
1g, it is not always the case that 1g = 1g.

and when a € S has an inverse in S, that inverse is not always an inverse for a
in R.

Examples:

When R = Zj5 and S = 3Z12 = {0,3,6,9}. The multiplication operation in S
is given by

A table.

See picture.

We see that 1¢ =9, but 1g = 1.

and that the inverse of 3 in S is 3. But 3 has no inverse in Z12

eg.

When R is a commutative ring,

On(R) < GLn(R)

because



if A€ O,(R), then ATA=1.

So |A]?> =1 so |A| is a unit in R.
so A€ GL,(R)

This shows that O, (R) C GL,(R).
and

See pictures.

|G
Forae G ...

3 September 11th

Let us find a matrix formula for the rotation in R? about O = (0,0) by @
(counterclockwise).

x| _ |rcosy
It [y} a [rsinw}
then the rotation Ry about 0 by 6 is given by

]

rsin
[r cos(0 + )
|7sin(0 + 1)

_ [ cos @ cosyp — rsinfsiny
~ |rsinfcos v + rcos O sin g

~ [cos® —sind] [z
~ [sinf@  cos@ | |y

Thus, we have Ry = {COSG e ‘9} .

sinf  cosf

Let us find a matrix formula for the reflection Fy in the line in R2? through
O = (0,0) which makes the angle § with the positive z-axis.

Solution:

When L has unit normal vector n. Recall that

Proj,z = (z-n)-n

So the reflection in the line L.



Fp(z) = x — 2Proj,,x
=xz—2(x -n)n
=z —2(n"z)n

=2z —2nnTz  Using matrix multiplication

Thus, Fr(z) = (I — 2nnT)z
That, Fr, = I — 2nn”

T
(eg. If L has equation ax + by + ¢ = 0. We can take n = SCH) . )

So Ve
Fy (f/) = (I —2nn7) (;)

(-2 (5 ) ()

. a a’? ab
Side note: <b> (a b) = (ab a2)

When L is the line through O which makes the angle g with the positive z-axis.1

o e . cos ¢
A unit direction vector for L is u = sin 3
2

—sing
n = 0
COS§

Fy=F;, =1-2nn"

-0
—sin ¢
=1-2 2 ) (—sin? cos?
cosg ( 2 2)

_ (cos@  sinf
~ \sinf —cos@

and a unit normal vector is

So

On(R) ={A € M,(R)|ATA =T}
< GLy(R)

Theorem: (Subgroup Test I)

Let G be a group with identity e = eg and operation *, and let H C G be a
subset.

Then, H < G (that is H is a subgroup of G) if and only if



l.ee H
2. H is closed under x for all a,b € H, we have axb € H

3. H is closed under inversion for all a € H, we have a~ ' € H.

Proof:

In order for H to be a subgroup, we need (2) to hold so that * restricts to give
a well-defined operation on H.

If H has an identity element ey, then ey * ey = ey in H.

Soegxeg =eyg in G

So eg = eg. by cancellation in G.

If a € H has an inverse in H,

say axb=bxa=ein H.

Then, we also have a *b =bx*a in G, so must have b=a"!in G

Thus, for H to be a subgroup of G properties (1), (2) and (3) hold.

When (1), (2), and (3) hold, note that * is automatically associative in H
because it is associative in G.

So H is a subgroup of G.

Remark:

When R is a ring with identity 1 and S is a subring of R with identity 1g, it
is not always the case that 1¢ = 1 and when a € S has an inverse in .S, that
inverse is not always an inverse for a in R.

For example, when R = Zjo, and S = 3Z;2 = {0,3,6,9}. The multiplication
operation in S is given by:

[en) Hen) Nen] Ban] N ew)
WO OlWw
DO OIS
O W O|l©

N=] N=rI VL] Nenl

We see that 1¢ =9 but 1z = 1, and that the inverse of 3 in S is 3 but 3 has no
inverse in Zqs.
When R is a commutative ring,
Eg.
On(R) < GL,(R)

because

if A€ O,(R), then ATA=1

So |A|? =1, so |A| is a unit in R. So A € GL,(R).
(This shows that O,(R) C GL,(R) )

and

1. I € O,(R), Since (I =T).



2. if A,B € O,,(R), then

(AB)T(AB) = BT AT AB
=BTIB
=B"B
=1

3. If A€ Ou(R), (ATA=1)
then
(Afl)TAfl _ (AT)flAfl
=AA) =11 =1

because when AT A = I, A is invertible with A= = AT.
So AAT =1.

|G| = number of elements in G when G is finite

smallest £ € ZT af = e

oo if no such ¢ exists

ForaEGz{

4 September 13th

Definition:
Let G be a group. The order of G, denoted by ord(G) or by |G|, is the cardinality
of G:

So we have

Gl = the number of elements in G, if G is finite
oo, if G is infinite

For a € G , the order of a in G, denoted by orda or ordg(a) or by |al, is

the smallest positive integer n € Z*

if such a positive integer exists,
la| = < such that o™ = ¢

00 if no such positive integer exists.
Eg.
|Z,| =n
[Unl = ¢(n)



where

¢ :ZT — ZT is the Euler phi function (also called the Euler totient function)
By definition, ¢(n) = |U,| = number of {1 < k < n|ged(k,n) =1}

eg. When p is a prime

d(p)=p—1

because U, = Z, \ {0}, so |U,| =p— 1.

and when k € Z7,

o(p*) =p* —p"!

Because Uyr = {1,2,3, P =03\ {p,2p,3p, ..., p*}

We shall prove later that when n = HE:I pf where the p; are distinct primes,

Hfbm :H( —pl )

Eg. When p and ¢ are distinct primes

d(pq) = |Upgl = (p = 1)(g — 1)

Eg. Find the order of the group GL,(Z,) where p is prime.

Solution:

We need to count the number of matrices A € GL,,(Z,), say A = (u1,ua, ..., Up)
with each uy € Z;.

For A to be invertible, the columns need to be linearly independent.

We need the first column wu; to be non-zero. So the number of possible ways to
choose u; € Zy \ {0} is p™ — 1.

Having chosen uy, the second column uy can be any vector in Z; which is not
in Span{us} = {tw1|t € Z,}

Since |Span{us }| = p, there are p™ — p choices for us.

Having chosen w1, ug, we can choose u3z to be any element in Zj \ Span{ul, us}
and Span{uy,us} = {t1u1 + tauslty, ta € Zp} So that \Span{u17u2}|

So the number of possible choices for usz is p™ — p2.

This continues similarly for each column.

Thus, |GL,(Zy)] = (" — 1) (p" = p)(p" — p?)..(p" —p" "

If we had syu; + souo = tiuy + tous, then s; =t and so = to.

Exercise: Show that |GLy(Z)| = oo

Exercise: Show that if « € G and b € H, and ordg(a) = n and ordg(b) =m
then ordgxm(a,b) = lem(n,m) = aed(n)

Note: If G is an additive abelian group, and a € G, then

la| = the smallest n € Z' such that na = 0 (if such a n € Z*1 exists)
Eg. In Zyg, find |6| = ord(6)
Additive notation.

Brute force
Solution:



k 001 2 3 4 5 6
k-6/0 6 12 18 4 10 1

So |6| =10 in Zzo.

Eg. Find |7| in U100

Solution:

Make a multiplication table and figure out that |7| = 4.

NGIIEN|
co| co
= ©
—
o

6

4.1 Chapter 2 Cyclic Groups and Generators

Note that if G is a group and Hy < G for each k € K. Then (., Hr < G by
the Subgroup Test.

1. ec Hy forall k € K So e € (), Hi

2. If a,b € (e Hy, then for every k € K, a,b € Hy, so ab € Hj, Since
ab € Hy, for every k € K, we have ab € (¢ jc Hi-

3. Similarly, if a € (¢ Hi, then a™' € N, o Hi

Definition:

Let G be a group and let S C G be a subset. The subgroup of G generated by
S, denoted by (S), is the smallest subgroup of G which contains S.
Equivalently, (S) is the intersection of the set of all subgroups of G which
contains S.

When S is the finite set, we often omit the set brackets and write

{a1,a9,...,a,}) = {a1,as,...,ay)

A cyclic group is a group G such that G = (a) for some a € G.
If G is any group and a € G, then (a) is a cyclic subgroup of G.
Theorem: (Elements in a Cyclic Group)

Let G be a group and let a € G

1. {a) = {a*|k € Z}
2. If |a| = oo, then for k,l € Z, we have a* = a! <—= k=1.
(So the elments, a*, k € Z are distinct)

3. If |a| = n, then for k,1 € Z, we have a* = a! <= k=1 mod n
(So we have (a) = {a*|0 < k < n} = {a*|k € Z,} with the listed elements
distinct)
Proof:

1. (a) is the smallest subgroup of G which contains a. Since a € (a), by
closure under the operation and inversion and induction, a* € (a) for all
k€ Z.

So {a*|k € Z} C (a).
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Elements in Cyclic Group (Continue)
1. Also, note that H = {a*|k € Z} is a subgroup of G because
(a) e=a’ € H
(b) For k,l € Z
af-al =a*t € H, and
(c) For k € Z,
(@) t=aF*ecH
Since a € H and H < G, it follows that {(a) C H.
2. Suppose |a| = oo, (this means there is no positive integer r such that
a” =e).
Let k,l € Z,

If £ =1, then of course a
1

k— b

Suppose that a* = a
Suppose k # [, say k < [. Then

This contradicts the fact that there is no r € Z* such that a” = e.

3. Suppose |a| = n. (So n is the smallest positive integer such that a™ = e)

If k=1 mod n,
say l =k +nqg withqe Z
Then

Suppose, conversely, that k,l € Z and a* = a'.
Then

Use the Division Algorithm, to write

10



l—k=q-n+r

with ¢,r € Z and 0 < r < n.
Then
e = al—k — aq~n+7“

=(a")?-a"=e-a" =a"

Thus, we must have r =0

(Otherwise, r would be a positive integer less than n with a” = e, contra-
dicting the fact that |a| =n ).

Since r = 0, we have
l—k=gn+r=gqn

Sol =k+ gn, hence l = k mod n.
Corollary:
When G is a group and a € G, we have

la] = [(a)]

Theorem: (Subgroups of Cyclic Groups)
Let G be a group and let a € G.

1. Every subgroup of (a) is cyclic.

2. If |a| = oo, then for k,I € Z, we have

(a®)y ={d) = 1=+k

So the distinct subgroups of (a) are

The trivial group (a®) = {e}
and the groups (a*) with k € Z+.

3. If |a] = n, then
for k,l € Z, we have

(a®) = (a')
<~ ged(k,n) = ged(l,n)

and if d = ged(k, n).

11



Then

d
(a*) = (a?)
={a’a%,a®, ... a" )

= {d"|k € Z,, 4}

So the distinct subgroups of (a) are the groups
(a) = {a"|k € Zp;a}

where d is a positive divisor of n.
Note that: n —d = (5 —1)d

(Otherwise, r would be a positive integer less than n with a” = e, contra-
dicting the fact that |a| = n).

Since r = 0, we have

l—k=qn+r=qn

Sol=k+ qn, hence l = k mod n
Proof:

(a) Let H < (a) = {a"|k € Z}.
If H = {e}, then H = (a") (which is cyclic).
Suppose H # {e}
Chooset € Zso e =al € H.
Note that a=* = (a*)~! € H too
So we have al!l € H with || > 0.
Let n be the smallest positive integer such that a™ € H
We claim that H = (a™).
Since a™ € H, we have

a"" e H

for all k € Z.
So (a") ={a*"|k € Z} CH
‘We need to show that

H C (a™) = {a"|t € Z}

Let | € Z with a! € H.
write [ = gn +r with 0 < r < n.

12



Then

a" = al qn
=a - (a™)71
€eH

Since ¢! € H and a™ € H.

Since n is the smallest positive integer for which a™ € H, we must
have r =0

Thus,

Thus, H C {(a™)

September 18th:

Part 2 as an exercise

Suppose |a| = n,

So {(a) = {a®,a',a?,...,a" '}

Note that if d is a positive divisor of n, then ,
(a) = {a°,a% a%d,...,a" "}

= {a"|k € Zp/a}

By the definition of order:
: dl — [(,d\] —
with |a®| = [(a®)] = a
It follows from the previous theorem:
We claim that for any integer k € Z, we have

where d = ged(k,n)
Let k € Z and let d = ged(k,n)
Since d|k, it follows that

a® € (a) = {a?q € 7}
Hence,
(a*) < (a”)

Also, because d = ged(k,n), we can choose s,t € Z so that d =
ks + nt.

13



It follows that

ad akernt (ak)s . (an)t

= (a*)® since a" =e

Hence, a? € (a*) = {a**|s € Z}

Hence, (a) < (a¥).

Thus, (a*) = (a?), where d = ged(k,n), as claimed.

Now, let k,1 € 7Z.

If ged(k,n) = ged(l,n) = d,

then (a*) = (a?) = (a’)

Suppose that (a*) = (a!) and let d = ged(k,n) and ¢ = ged(l, n).

Then
(a?) = (a") = (a') = (a®)
[{a®)] = |(a%)|
d- ¢
d=c
Eg. In the Cjp = {z € C*|212 = 1} = {1, 0,02, a3 ;o) = (a)

The divisors of 12 are 1, 2, 3, 4, 6, 12.
The distinct subgroups of Ci5 are:

<a1> {laaaaaaaaaaOal}*Clg
(@) ={1,0% a* a% a® a'} = Cs

() ={1,0%, a5 a% = C4

(a*) ={1,a* a®} = C3

(af) ={1,a°} = {£1} = O
(@) ={1} =1

Corollary (Orders of Elements in Cyclic Groups):
For a € G,

If |a| = oo, then |a®| =1

14



and |a*| = oo for 0 # k € Z.

If |a| = n, then for k € Z, |a*| = FERICROR
Corollary (Generators of Cyclic Groups):
For a € G,

If |a| = oo, then for k € Z

(aF) = (a) <= k=+1

and if |a| = n, then for k € Z (or for k € Z,,).

(a®) = (a) <= ged(k,n)=1 < kecU,

Ciz = () = (a”) = (o) = (o).
a = ei27/12
Corollary (The Number of Generators in a Cyclic Group):
For a € G,

If |a| = oo, then the number of elements in (a) which generate (a) is equal
to 2.

And if |a| = n, then the number of generators of (a) (the number of
elements b € (a) such that (b) = (a)) is equal to ¢(n) = |U,|.

Corollary (The Number of Elements of Each Order in a Cyclic
Group):

Let a € G,
If |a| = oo, then in (a), there is 1 element of order 1. (namely a° = e).

and if |a| = n, then in (a), the order of every element in (a) is a positive
divisor of n and given a positive divisor, d of n, the number of elements
in {(a) of order d is ¢(d).

Corollary (Number of Elements of Each Order in a Finite Group):
If G is a finite group, then for each d € Z*.
The number of elements in G of order d is a multiple of ¢(d); indeed

it is equal to ¢(I) multiplied by the number of distinct cyclic subgroups of
order d in G.

Corollary:

For n € Z*, we have
n=>y ¢(d

\sum d—n : Sum of all positive divisors

15



(where the sum is taken over all the positive divisors of n)
Example:

In Z12 = (1)

We have the subgroups with generators bolded.

6 September 20th

Theorem:
Let G be a group and let S C G be a subset. Then

(S) = {al"ak>...aj'|l €N,a; € S, k; € Z}
= {a¥ab? .. 4]l €N a; € S with a; # ait1, ki € Z with k; # 0}

where N ={0,1,2,...}

and we use the convention that the empty product, (a]f1 s ,afl with { = 0). is
the identity e € G

If G is abelian, then

(S) = {a’flagz...aflﬂ € N,a; € S with a; # a; when i # 5,0 # k; € Z}
If G is an additive abelian group, then

<S> = {k1a1+k202+"'+klal|l eN,q; € S with a; #aj Wh@ﬂ’&#],o#kl EZ}
= Spany/(S)

Sketch Proof:

Let H = {a}*a%>...a}"|l €N,a; € S,k € Z}

By the definition of (S), we have a; € (S) for all ¢ (Since a; € S) Hence, every
element a*1a*1 ... a* € H lies in (S).

By closure of (S) under the operation and inversion. So we have H C (S5).
Also, note that H < G because e € H (by taking [ = 0) and since the product
of two elements of H lies in H.

J1 g2 Juy (k1 pke kmY _ ,J1 .72 Jipkipke km
(a1'ay’ ...a]")(D1 by ... by ) = attay’ . ..a]'bitby? .. by

16



and the inverse of each element of H lies in H.

ki1 ko kin—1 _ —k —ko —ky
(a7 ay?...a)")"" =a; "' .. ay %ay
Since S C H (if a € S then a = a' € H) and H < G it follows that (S) C H.
If A; = Q341
Then
k1 ki kita ki k1 kit+kit1 kiyo ki
ai'...afat a)t = aitay Qi -0y
If k; =0, then
k1 ki kit ki Kk ki—1 kit ky
ai*...affal e =a)t e e
Examples:

In Z? (or in Q? or R?),

((3,1),(1,2)) = {s(3,1) + £(1,2)|s,t € Z}
= Spanz {(3,1), (1,2)}
= Spanz {(5,0), (2, ~1)}
= ((5,0), (2, -1))

Because
(5,0) =2(3,1) — 1(1,2) € ((3,1), (

(2v 71) = (37 1) - (172) € <(Sa 1)7 (172)>

—_
[\
~—
~

So
((5,0),(2,1)) = ((3,1),(1,2))

And similarly

(3,1) = (5,0) — (2,-1)
(17 2) = (55 0) - 2(27 _1>
So <(37 1)7 (L 2)> S <(5a O)a (27 _1)>
Eg.
Recall that
Og(R) = {R97F9|9 S R}.
with RBRQ = RﬁFa = FB+a7F[3Ra = F[g_a,FﬁFa = RB—a
and for n € ZT
Dn = {Rk7Fk|k S Zn}

where Ry, = Ry, , Fy = Fp, with 6, = 22&
and we have

17



RiRy, = Ry, RiFy, = Fiyy
F Ry =F_y, FiFy, =R

with k,1 € Z,.

Note that D,, = (Ry, Fp).

because Ry = RY

and Fk = RkFO = R]fFo

Often books write R as o and Fy as 7 and [ = Ry = e

So D, = {o,7) with 0" = e, 72 =¢

oT = RlFQ = F1
= FoR, 1

=70 !

(Since 0 — (n —1) =1) in Z,
Remark
If S is a set (with no operation), then the free group on S is the set of expressions

F(S) = {a}"ak? .. . a}'|l € N,a; € S with a; # ai11,0 # k; € Z}

where the operation is given by concatenation followed by grouping and cancel-
lation.
So the product

(a{l ...a{‘) * (b]f1 ...bfnm)

is given by (a{l e a{i’f a{’ blflbl?€2 e bﬁ;ﬂ) and the if a; = b, we group by replac-
ing a{"b’fl by a{i+k1 and then if j; + k1 = 0 then we cancel the form a{ﬁkl =a)
and check to see if a;_1 = bs.
Example:
In F(a,b),
(a®b*ab®)(b™2%a"'b) = a®bPab®b 2a" b

=a?bab’a b

= a’b*aa 1D

= ab®b

=ab*
Eg.

F(o,7) = {o,7) and D,, = {0, T)
but in F(0,7),0" # e,72 # e, and o7 # 70" L.
Remark

18



When S is a set, the free abelian group on S is

A(S) = {k1a1 + kaa2 + - - + kjay]k € N,
the a; are distinct elements in S,0 # k; € Z}

If we identify

kiai + koas + - - - + kjay
with the function f : S — Z given by f(a;) = k; and f(x) = 0 when z ¢
{ai,...,a;}. Then A(S) =Z° = {f : S — Z} under addition of functions

(f+9)(x)=f(z)+g(z) forall z € S

7 September 23th

Definition:
For a group G, the centre of G is the subgroup

Z(G) ={a € Glab = ba for all b € G}

For a € G, the centralizer of a in G is the subgroup

C(a) = Cg(a) = {b € Glab = ba}

Exercise:

Show that Z(G) and C(a) are subgroups of G.

Chapter 3 The Symmetric Group

Recall that when S is a set, the group of permutations of S, denoted by Perm(5),
is the set of bijective maps f : S — S under composition.

For n € Z*, the nt* symmetric group is the group

Sp =Perm({1,2,...,n})

under composition.
Definition:
For a € S,,, we can specify a by giving its table of values as follows.

o (L 2 3 . &
T \a(l) a2) ad) ... an)
When we can express « in this form, we are using array notation.
Eg.
In array notation,
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12 3
aﬁ:(:& 1 2>

=3 3 Yo

Eg. We can think of D,, as being a subgroup of S,,, because D,, permutes the
elements in C, = {a®,a’,a?,...,a" '} with a = ¢/ and we can consider
that an element of D,, permutes the exponents of the elements a* where k €
{1,2,...,n}.

If we consider Dy as a subgroup of Sy in this way.

and

D4:{I7R17R27R3aF07F17F2;F3}

with
1 2 3 4
B = (2 3 4 1>
1 2 3 4
Fo= (3 2 1 4)
Definition:
When ay, as, ..., aq are distinct elements in {1, 2, 3, ..., n }, we write

a = (a1,az,a3,...,a)

to denote the permutation o € S,, such that

afar) = az,afa2) = as, ..., a(a-1) = a, a(w) = a.

( So a(aj) = Qj+1 Wlth] € 7 )

and a(k) =k for k ¢ {a1,as2,...,a;}

A permutation « € S, of the above form is called an [—cycle.
Notes:

2. (a1,a9,...,a,) = (a2,as,...,an,a1) = (a3,04,...,0,,01,02) = ...
3. We can write an [—cycle uniquely in the form a = (a1, as,...,a;) with
ay = min(ay, as, ..., a;).
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4. If v is an l—cycle, then |ao| = 1.

Definition:

Two cycles a = (a1, aq9,...,a;) and § = (by,ba,...,by) in S, are called disjoint
when {a1,a9,...,a;} N {b1,ba, ..., b} = 0.

(So no a; is equal to any b;).

More generally, the cycles

[ ((11’1, A1,2y -+, alyll)
Qo = (ag,l, 2,2, ... ,a2712)
Ay = (am,l, amyg, e ,ame)

are disjoint when no a; ; is equal to and ay; unless i = k£ and j = 1.
Eg.
In Sg, we have

(25134)(72651)(31826) = (18624)(375)

Theorem (Cycle Notation)
Every a € S, can be written as a product of disjoint cycles. Indeed, every
e # a € S, can be written uniquely as a product of disjoint cycles in the form

=102 ...0n

with

Qg = (ak,laak,% .- -aak,lk)

where m > 1, each [}, > 2, for each k,ar1 = min{ag;|l < i < I} and a1; <
a1 < ...Qm1-

Let e £ a € 5,

Proof:

For o to be in the given unique form, we need to choose a1 to be the smallest
ke {1,2,...,n} such that a(k) # k. Having chosen a11, we must choose

a1z = alar),a13 = a(as) = a®(ar1), a1 = alarz) = a*(a;)

and so on.
Eventually, we must reach a positive integer I such that o!(ay;) = a1
and we must choose [ to be the smallest such [.

This uniquely determines the first cycle ag = (a1,1,a1,2,.--,0a11,)-
If @« = a1, we are done.
Otherwise, we must choose ag 1 to be the smallest k£ € {1,2,...,n}\{a1,1,a1,2,---,61,, }

with a(k) # k.
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8 September 25th

Disjoint cycles commute.
We must have

ase = alas),ass = a(as) = a®(az)...

and I, must be the smallest positive integer such that a!2(ag ;) = as1
Then Qg = (042717 a2’2, ey a2,12)
Note that a; and as are disjoint because if we have

al(am) = O[j(azl) for somei, j

Hence,
a2,1 = Ozij (Oéj (a271))
=qad (ai(al,l))
= Oéifj(am) e{ai1,a12,...a1,}
But we chose as 1 ¢ {a1,1,a1,2,..-,a14,}

If o = ajas, we are done and otherwise we repeat the above procedure.

Note:

Disjoint cycles commute indeed if o = (a1, a2,...,a;) and 5 = (b1,b2,...,by)
are disjoint cycles, then

for k € {1,2,...,n}

If k= a;, then

If k = b;, then

and if k € {a1,...,a;} U{b1,..., b}

Then, a (8(k)) =B (a(k)) =k

Note:

If a = aqas. .. ay where the oy are disjoint cycles with |ay| = I, then

la] =lem (Jag ], - - . |am])
=lem(ly,...,lm)
Proof:
Let p € Z*. If p is a common multiple of l4,...,l,, then o = e for all k.
(when |a| = I, we have a* = e <= k)
So
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af = (s ...ap)?
=alah ... o Since disjoint cycles commute
=e
If p is not a common multiple of l4,...,[,,, then we can choose k so that p is
not a multiple of /.
Write p=gq -l +r with 0 < r < .
Then for o = (ag10k2--- Ak 1y)

We have of (ag1) = of(ag1) = ap14r # k-
So,

o (ak,1)

=(a1...0am)" (ar1)

=af Haf (ak.1)
itk
=0, (ak,1)

Fap 1

Hence, a # e.
Eg. Find the number of elements of each order in Sg.

Solution:

Form of « # of such « ||
(abcde f) (3)5! =120 6
(abcde) (D)4l =144 5
(abcd) (5)3!' =90 4
(abcd)(ef) [ ()(F)31!=90 4
(abe) (5)2! =40 3
(abe)(def) [(3)-5-4-1-2-1=40]3
(abc)(de) (5) (52! =120 6
(ab) (5) =15 2
(ab)(cd) (N1-3-1.1=45 2
(ab)(cd)(ef) [ (5)1-5-1-3=15 2
(a) 1 1
Total 720

|| | # of such «

6 | 240

5 | 144

4 | 180

3 |80

2 |75

1|1
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Theorem: (Parity of Permutations)
Let n > 2 and consider S,,,

1. Every permutation in S, can be written as a product of 2-cycles.

2. If e € S, is equal to a product of I 2-cycles, e = (a1 b1) (as b2) ... (a; by)
with a; # b;, then [ is even.

3. If « € S, is a product of I 2-cycles and a product of m 2-cycles, then
m =1 mod 2.

Proof:

1. We already know every a € S,, can be written as a product of (disjoint)
cycles, and for @« = (a; as ... a;), note that

a= (a1 a;) (a1 aj—1) ... (a1 a3) (a1 az)

2. Note that we cannot write e as a 2-cycle. (e # (a,b) where a # b) and we
can write e as a product of 2 2-cycles e = (1 2) (1 2)

Let I > 3. Suppose, inductively, for all m < [, if e can be written as a
product of m 2-cycles, then m must be even.

Suppose e can be written as a product of [ 2-cycles,
say e = (aq by) (az ba) ... (a; by) where a; # b; and let a = a;.

Of all the ways in which we can write e as a product of [ 2-cycles, e =
(1 y1) (X2 y2) ... (&1 Y1), 2; # y; in which a = x; for some.

Choose one such way

e = (Tl 81) (7“2 82) P (Tl Sl)

with r; # s,

a = r for some k

r; # a and s; # a for i < k with k chosen to be as large as possible.

Note that we cannot have k # [ because a product of 2-cycles (1 y1) (z2 y2) - - - (x y&)
with zp = a and z;,y; # a for i < k is not equal to e since it sends yj to

Tk = a % yg-

Note that (rg sk) (rg+1 Sk+1) must be of one of the following forms (after

possibly interchanging 711 and sg41)



where a, b, ¢,d are distinct elements in {1,2,...,n}.

But notice that

(ab)(ac)=(acb)=(bc)(ab)
(ab)(bc)=(abec)=(be)(ac)
(@b) (cd) = (c ) (a b)

which would contradict our choice of k.
Thus, (% sk) (rg+1 Sk+1) is of the form (a b) (a b)

After cancelling these two 2-cycles, we can rewrite e as a product of (I — 2)
2-cycles.

By the induction hypothesis, [ — 2 is even, so [ is even.

3. Let a € Sy,
Suppose a = (ay b1) (az ba) ... (a; b)) ,a; #b;.
and o = (¢1 dy) (c2 d2) ... (e di) , ¢ # d;.
Then e = aa™! = (ay by) ... (a; by) (¢ dm) - .. (ca da) (c1 dy)

By part 2, [ +m is even, so m =1 mod 2.

Definition:

For o € S,, with n > 2, we say that « is even, and we write (—1)* = 1, when
« can be written as a product of an even number of 2-cycles, and we say that
a is odd, and we write (—1)® = —1, when « can be written as a product of an
odd number of 2-cycles.

(—1)” is called the parity of a.

Note:

In S, with n > 2, we have

1. (-1)° =1

2. If a is an l-cycle, then (—1)* = (=1)'"".

3. Forall 0,8 € Sy, (—1)* = (-1)* (~1) 8.
—1

4. Fora € S,,, (-1)* = (-1)"

Definition:
The n!" alternating group is the subgroup

A, ={aeS,|(-1)*=1} <S5,
Eg.

Also, recall that when n > 3, we can consider D,, as a subgroup of S,,.
Using cycle notation,
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S3={(1),(12),(13),(23),(123),(132)}

A3 ={(1),(123),(132)}

D3 ={Ro, R1, Re, Fy, F1, F»}
={(1),(123),(132)(12),(13),(23)}
_—

Sy={(1),(12),(13),(14),(23),(24),(123),(132),(124),
(142),(134),(143),(234),(243),(1234),(1243),
(1324),(1342),(1423),(1432),(12)(34),
(13)(24),(14)(23)
Ay ={(1),(123),(132),(124),(142),(134),(143),(234),
(243),(12)(34),(13)(24),(14)(23)}

D4:{15R17R27R3aF07F17F2;F3}

with for example, Ry = (1234),Ry = R? = (13)(24),F = (13),F
(14)(23) etc.

Example:
Sn=1((12),(13),(14),...(1n)
:< 12)7(23)7(34)v 7(77'71777'»
=((12),(123... n)).
Example:

Show that A,, is generated by 3-cycles. (a b ¢).

A, =((123),(124),(125),..., (12n))

10 September 30th

Exercise:

If a € Gand b € H and |a| and |b| are finite, then in G x H, we have |(a,b)| =

lem (|al, |b])

Zg X L5

Generators for S,, and A,:
Since every a € S,, is a product of 2-cycles,

Sp ={((abd)|a,be{1,..., n},a < b)
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Since when a, b are distinct

(ab) = (1a)(1b)(La)

It follows that S, = ((12),(13),(14),...,(1n)).
Also, note that for k # 1,

(1k)=(12)(23)(34)...(k—2k—1)(k—1k)
(k—2k—1)...(34)(23)(12)

and so we also have

Sp=1((12),(23),34),...,(n—1,n))

Also note that

Sp=1((12),(123...n))
because

kk+D)=@12..n"a2@2.. .n *Y
If we think of D,, as a subgroup of .S,,,

Dn:<R17F0>
={(123...n),(In—=-1)2n—-2)...(kn—k)

where k = L"T_lj
Since every « € A,, is a product of an even number of 2-cycles, A,, is generated
by all products of pairs of 2-cycles.

A, ={(ab)(cd)|a,b,c,d e {l,...,n},a#b,c#d)
Also, we claim that A, is generated by 3-cycles,

A, = {(abc)|a,b,c are distinct elements of {1,2,...,n})

Proof:
Every product of a pair of 2-cycles is of one of the forms,

(ab)(abd),(ab)(ac),(ab)(be),(ab)(cd)

with a, b, c and d distinct, and we have
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(ab)(ab)=e=(abc)’=(abc)
(ab)(ac)=(ach)
(ab)(be)=(abec)
(ab)(cd)=(adc)(abc)

Exercise:

Show that 4, = ((123),(124),(125),...,(12n))

Equivalence Classes

Definition:

An equivalence relation on a set S is a binary relation ~ on S such that

1. Foralla € S, a ~ a.
2. For all a,b € S, if a ~ b, then b ~ a.

3. For all a,b,c€ S, ifa~band b~ ¢, then a ~ c.

When ~ is an equivalence relation on S and a € S, the equivalence class of a is
the set [a] = {x € S|z ~ a}
Note that for a,b € S,

a~b < bea] < [a] =[b

and when a 7 b, (so [a] # [b]), we have [a] N [b] =
Sketch Proof:

Suppose a ~ b, then b ~ a by (2), so b € [a].

If x € [a], then z ~ a.

Then since z ~ a and a ~ b, we have z ~ b by (3), hence = € [b].
Thus, [a] C [b].

If z € [b], then z ~ b.

Since a ~ b, we have b ~ a by (2).

Since & ~ b and b ~ a, we have x ~ a by (3).
Hence, z € [a].

Thus, [b] C [a].

Thus proves part of the 1st statement.

Suppose a # b, (so [a] # [b]).

Suppose, for a contradiction, that [a] N [b] # 0,
Choose ¢ € [a] N [b].

Since ¢ € [a], we have [c] = [a].

Since ¢ € [b], we have [c] = [b].

Thus, [a] = [¢] = [b], (giving a contradiction).
Example:

When n € Z*, we can define a relation ~ on Z by a ~ b <= a =b mod n.
Then, ~ is an equivalence relation,
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Z,, = {la]|la € Z}

Definition:
When ~ is an equivalence relation on a set .S, the quotient of S by ~ denoted
by S/ ~, is the set of equivalence classes.

S/ ~={lalla € S}

Definition:

For a group G and an element a € G, the left multiplication by a is the map
L, : G — G given by L,(z) = ax.

and the right multiplication by a is the map R, : G — G given by R,(x) = za.
The conjugation by a is the map C, : G — G given by C,(z) = aza™?!.

Also, for a,b € G, we say that a and b are conjugate in GG, and we write a ~ b,
when b = Cy(a) = gag™" for some g € G.

Note that every conjugacy is an equivalence relation on G.

1. a ~asince Ce(a) = eae ™! =a

2. If a ~ b, say b= Cy(a) = gag™, then a = g~'bg = Cy-1(b) and

3. If a~b,say b= gag~*, and if b ~ ¢, say ¢ = hbh™!, then

¢ = hbh™! = hgag=*h™!
= (hg)a(hg) ™"
= Chg(a)
So ¢~ a.

The equivalence class of a € G under conjugacy is called the conjugacy class of
a in G, and it is denoted by Cl(a), so

Cl(a) = [a] = {z € G|z = gag™" for some g € G}

11 October 2nd

Conjugacy Classes

For a,b € G, we say a is conjugate to b, and write a ~ b, when b = Cy(a) =
gag ™! for some g € G.

This is an equivalence relation, the equivalence class of a € G is called the
conjugacy class and is denoted by Cl(a), so

Cl(a) = [a] = {z € G|z = gag™" for some g € G}

G is the disjoint union of the conjugacy classes.
Theorem: Conjugacy Classes in S,
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For a, 8 € S,, we have a ~ 8 and if and only if when a and  are written in
cycle notation, they have the same number of cycles of each length.

Proof:

When « is written in cycle notation as

o = (au a12...a111) (a21 agg...a212)...(am1 amg...amlm)

For all o € S,,, we have
cac” ! = (o(ar1),0(a12),...,0(a1y)) ... (6(ami), ..., 0 (@myi,,))

(On the right, o (a;;) is sent to o (a; j+1), and on the left, o(a;;) is sent by o~*

to a;j, which is sent by a to a(a;;) = a; 41, which is sent by ¢ to o(a; j+1))
Eg.

When we listed the possible ”types” or ”forms” for elements in Sg as
(abede f),(abcde),(abed)(e f),(abcd),

(abe)(de f),(abe)(de),(ab)(cd) (e f),(ab)(cd),(ab),(a).

We were actually listing the conjugacy classes in Sg.

Chapter 4: Group Homomorphisms

Definition:

Let G and H be groups.

A (group) homomorphism from G to H is a function ¢ = G — H such that

¢(a-b) = ¢(a) - (b)

for all a,b € G

A bijective (group) homomorphism ¢ : G — H is called a (group) isomorphism.
We say that G and H are isomorphic, and we write G = H, when there exists
an isomorphism ¢ : G — H.

An endomorphism of G is a homomorphism from G to G and an automorphism
of G is an isomorphism from G to G.

We write
Iso(G,H) = {¢ : G — H|¢ is an isomorphism}
Hom(G, H) = {¢ : G — H|¢ is an homomorphism}

End(G) = {¢: G — G|¢ is an endomorphism}
Aut(G) = {¢: G — G|¢ is an automorphism}

Note:

Let ¢ : G — H be a homomorphism of groups.

1. ¢le)=e

2. ¢(a™t) = ¢(a)”
3. ¢(a*) = ¢(a)F for k € Z
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Proof:

ple) = d(e-e) = ¢(e) - p(e)
.. ¢(e) = e by cancellation.

¢a) ¢(a™") =¢(a-a™!) =ge) = ¢
o

3. Follows from (b) and from induction.

a)~! = ¢(a!) by cancellation.

Question: How is |al related to |¢(a)|?
Note:

1. I: G — G given by I(z) = x is a group homomorphism.

2.If ¢ : G - H and v : H — K are group homomorphisms, then so is
Ppop:GE—> K

3. If ¢ : G — H is an isomorphism (an invertible homomorphism), then
o1 H—G.

Proof (3)
Suppose ¢ : G — H is an isomorphism and let ¢y = ¢~' : H = G. Let ¢,d € H
Let a = ¢(c) and b = 9(d) so that ¢ = ¢(a),d = ¢(b).

Then
P(ed) = 1 (¢(a)p(b))
= (¢(a - b)) Since ¥ is a homomorphism
=a-b(sinceyp=¢ 1)
= ¥(c) - (d)
Corollary:

Isomorphism of groups is an equivalence relation (on the class of all groups).
{z|F(z) is true} is a "class”.
If A is a set, then

{z € A|F(z) is true}

is a set.
For all groups G, H, K

1. G=G.
2. If G 2 H, then H = G.
3. f G=® H and H =2 K, then G =2 K.
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Note:
Let ¢ : G — H be a homomorphism of groups. Then

1. If K < @G, then ¢(K) = {¢(a)la € K} < H, in particular, Im(¢) =
Range(d) = 6(G) < H.

2. If L < H, then ¢~ '(L) = {a € G|¢(a) € L} < G, in particular, Ker(¢) =
6~1(e) < G.

Proof:
Suppose K < G

12 October 4th

Definition:

Let G and H be groups.

A group homomorphism from G to H is a function ¢ : G — H such that
o(ab) = ¢(a)o(b) for all a,b € G.

A group isomorphism from G to H is a bijective group homomorphism from G
to H.

Note:
For a homomorphism ¢ : G — H
1. ¢(e) =e

2. ¢(a™!) = (o)™
3. ¢(a*) = ¢(a)F for all k € Z

If |p(a)] =n in H, then ¢(a") = ¢(a)” = ¢

So |a| is a multiple of n = |¢(a)|

Note:

I:G — Gisanisomorphismif¢: G — H and ¢ : H — K are homomorphisms,
then sois Yo ¢: G — K.

If ¢ : G — H is an isomorphism, then ¢—! : H — G is too.

Corollary:

Isomorphism is an equivalence relation (on the class of groups)

Definition:

When ¢ : G — H is a group homomorphism, the image of ¢ is denoted by

Im(¢), so

Im(¢) = Range(¢) = ¢(G) = {¢(a)la € G}
and the kernel of ¢ is the set

Ker(¢) = ¢~ '(e) = {a € G|¢(a) = €}
Side Note: Relation to Matrix
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A€ Myym(R), A:R™ — R™.

Ker(A) = Null(A4)
=AY0) = {r e R™|Ax = 0}

In GL,(C),

A~B < B:PAP™!

for some P € GL,(C).
Note:
Let ¢ : G — H be a homomorphism.

1. If K <@, then ¢(K) < H.
In particular, Im(¢) = ¢(G) < H.

9. If L < H, then ¢~ (L) < G
In particular, Ker(¢) < G.
Proof:

1. Suppose K < G
Then ¢(K) < H because

en = ¢(eq) € ¢(K)

since eq € K

and if a,b € K. So ¢(a), #(b) € ¢(K),

then ¢(a) - ¢p(b) = ¢p(ad) € ¢(K) since ab € K
and if a € K, so ¢(a) € ¢(K), then

$la)™ = d(a™") € $(K)

since ! € K.

2. Exercise.
Examples of Homomorphisms

The map ¢ : R — R* given by ¢(t) = e! is a homomorphism, because for
s,teR

d(s+t) =estt =e° - ¢



We have Kerg = ¢~1(1) = {0}
The map

¢:R—S'={zeC*z| =1}
given by ¢(t) = 2™
is a homomorphism because for s,t € R,

Qf)(S + t) _ ei27r(s+t)

_ 6227r5 . 6127rt

o(s) - ¢(t)

We have Ker(¢) = ¢~1(1) =Z

The map ¢ : GL,(R) — R* given by ¢(A) = det(A)
Missing parts ...

Examples:

Let G be any group, describe Hom(Z, G)
Solution:

Let a € G, define ¢, : Z — G given by ¢,(K) = a.
Then ¢, is a homomrophism, because

ba(k+1) =a* =ak . d!
= ¢a(k) : ¢a(l)
Note:
Every homomorphism ¢ : Z — G is equal to one of the homomorphisms ¢4, a €

G.
Indeed, given a homomorphism ¢ : Z — G, let a = ¢(1) and then for all k € Z

¢(k) = p(k - 1) = 6(1)* = a" = ¢a(k)

So we have ¢ = ¢,

Thus, Hom(Z, G) = {¢.]a € G}
Exercise:

Let G be any group, describe Hom(Z,,, G)

13 October 7th

Note:
For a group homomorphism, ¢ : G — H, note that

¢ is injective <= Ker(¢) = {e}

Proof:
If ¢ is injective, then since ¢(e) = e. It follows that
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¢la) =ey < a=eg

So

Ker(¢) = ¢~ (en)
= {a € G|¢(a) = en}
= {ec}
Suppose Ker(¢) = {e}.

Let a,b € G and suppose ¢(a) = ¢(b).
Then

¢(ab™") = p(a)p(b) ™" = d(a)d(a)”"

So ab™! € Ker(¢) = {eg}
Hence ab~! = ¢

sa=b

Examples of Isomorphisms
Examples:

x

1. The map ¢ : R — RT given by ¢(z) = €% is a group isomorphism with
inverse ¢ : R* — R given by 9(y) = log(y) = In(y).

2. The map ¢ : SO5(R) — S* given by ¢(Rg) = € is a group isomorphism.
3. Show that U12 = Z2 X ZQ

Solution:
In U;> we have the operation table.

1 5 |7 |11
1 1 5 |7 |11
5 |5 1 1117
717 |11 5
111117 1

and in Zy X Zso, we have the operation table

0.0) [ (1L,0) [ (0.1) [ (1,1)
0,0) [ (0,0) [ (L,0) | (0,1) | (L,1)
(1,0) | (1,0) [ (0,0) | (1L,1) | (0,1)
0.1 [ (0,1) [ (L) | (0,0) | (1,0)
(L) [ (L1 [ (0,1) ] (1,0) | (0,0
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From the table, we see that the map ¢ : Uja — Zs X Zo given by ¢(1) =
(0,0),0(5) = (1,0),6(7) = (0,1) and ¢(11) = (1,1) is an isomorphism.
Examples:

If a € G with |a|] = oo, then (a) = Z.

Indeed, the map ¢ : (a) = {a*|k € Z} — Z given by ¢(a*) = k is an isomorphism
with inverse v : Z — (a) given by ¥(k) = a*. (¢ is a homomorphism because
Yk +1) = a**t = aF - al = (k) - ¥(I) and ¥ is bijective by the Elements in
Cyclic Groups Theorem.)

Examples:

If a € G with |a] =n € ZT, then (a) ¥ Z,

Indeed, the map v : Z,, — (a) given by ¢(k) = a” is a group isomorphism. (by
the Elements in Cyclic Groups Theorem)

Theorem:

When k,l S 7+ with ng(k‘,Z) = 1, we have Zkl = Zk X Zl and Ukl = Uk X Ul.
Indeed, the map ¢ : Zy; — Zy X Z; and the map ¢ : Uy, — Uy x U; given by
¢(a) = (a,a), that is

¢(a mod kl) = (a mod k,a mod )

are group isomorphisms.

Proof:

Let us show that ¢ : Uy, — Uy x U; is an isomorphism.

Note that ¢ is well-defined because, for a € Z, if a € Uy, so ged(a, kl) =1
then ged(a, k) =1 and ged(a,l) = 1.

Soa € U and a € U

Hence ¢(a) = (a,a) € Uy x U;

Also note that ¢ is group homomorphism because, for a,b € Z

d(a-b) = (a-b,a-b) € Uy x U
:(a7a)'(bab)€UkXUl

Finally note that ¢ is bijective by the Chinese Remainder Theorem:
Given a with ged(a, k) =1, so a € Uy, and b with ged(b,1) =1,s0 b€ U,
We can solve the pair of congruences

z =a mod k
z =0bmod [

by the CRT.

and then

Since z = a mod k, we have ged(z, k) = ged(a, k) = 1.

And since z = b mod [, we have ged(z, 1) = ged(b, 1) = 1.

And since ged(x, k) = 1 and ged(z,1) = 1, we have ged(z, kl) = 1, so x € Uy,.
and since £ = a mod k and x = b mod [

We have
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¢(z) = (a,b) € Up x U,

This shows that ¢ is surjective.
The CRT also implies that ¢ is injective because the solution to the pair of
congruences

r = a mod k
z=>bmod [

is unique modulo, lem(k,!) = kl, (since ged(k,l) = 1)
Corollary:

1. When k,1 € Z* with ged(k,1) = 1, we have ¢(kl) = ¢(k)é(l). Since
¢(kl) = |Unt| = U x Ui = |Ug| - |Ui] = ¢(k) - o(1)

2. When n = Hézl pfi, where the p; are distinct primes,

l l

o(n) = [ o) = [T = pi* ™)

Example:

|Us000| = ¢(3000)
—g(20-3159)
@) () (- %)
=4-2-100 = 800

Theorem: (Properties Shared by Isomorphic Groups)
Let ¢ : G — H be a group isomorphism. Then

1. |G| = |H]
2. G is abelian <= H is abelian.
For a € G, we have |a| = |¢(a)]

G is cyclic <= H is cyclic.

oo W

GG and H have the same number of elements of each order

For n € ZT U {oo}, we have

{a € Glla] = n}| = [{b € H|[b| = n}|
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6. For a,b € G, we have

ar~b < ¢(a)~ ¢(b)

7. G and H have the same number of conjugacy classes (and the same number
of classes of each size)

8. For K < G, the restriction ¢ : K — ¢(K) is an isomorphism.

9. G and H have the same number of subgroups (and the same number of
n-element subgroups, and the same number of subgroups isomorphic to a
particular group L).

14 October 9th

Sample Proof:

Let ¢ : G — H be a group homomorphism, and let a € G.
Let us show that |a| = |¢(a)]

Forn € Z™,

a" =e <= ¢(a") = ¢(e) Since ¢ is injective.
<= ¢(a)" =e Since ¢(a™) = ¢p(a)”, and ¢(e) = e
Example:

1. Uss 2 Uy

Since |U35| = ¢(35) = 24, |U42| = (]5(42) =12.
2. S5 %2 GL3(Zs)

Since |S5| =5!=5-4-3-2

and |GL3(Z2)| = (22 —1)(22 —2)(22 —2?) =7-6-4
3. R*2C*

Since R* has no elements of order 3, but in C*, a =
a? = e™7/3 have order 3.

€27/3 and also

Inner Automorphisms

Recall that for a group G, Aut(G) is the set of isomorphisms ¢ : G — G. Note
that Aut(G) is a group under composition.

Note that for a € G, the conjugation map C, : G — G given by Cy(x) = aza™
is a group automorphism indeed.

1

Calwy) = azya™
=ara 1aya7 !

= Co(7)Cal(y)
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and for a,b € G,

Co(Cy(z)) = Co(bxzb™) = abxzb ta™!
= (ab)z(ab) ™! = Cyup(x)

So that in particular,

(Oa)_l = La—1

An automorphism of G of the C, : G — G for some a € G is called an inner
automorphism and we denote the set of inner automorphisms by Inn(G)

Inn(G) ={C, : G — Gla € G}
Note that the above calculations show that
Inn(G) < Aut(G)
Exercise:
1. Show that Aut(Z,) = U,
2. Find |Aut Dg| and |Inn Dg|

Theorem: (Cayley’s Theorem)

1. If G is any set with n elements, then Perm(G) & S,,.

Indeed, if f : G — {1,2,...,n} is any bijection, then the map ¢ :
Perm(G) — S, given by ¢(o)(k) = f(o(f~1(k))) for k € {1,2,...,n}.
That is, ¢(0) = fof~L.

2. If G is any group, then G is isomorphic to a subgroup of Perm(G). Indeed,
the map ¢ : G — Perm(G) given by ¢(a) = L, (where L, : G — G is given

by Lq(z) = az) is an injective group homomorphism. (So ¢ : G = (G)
is an isomorphism)

3. If G is a finite group with |G| = n, then G is isomorphic to a subgroup of
Sh-

Sketch Proof:
1. Verify that if 0 € Perm(G), then ¢(c) = fof~! € S,.
(So ¢(0) = fof~t € Perm{1,2,...,n})

Also, verify that ¢ is a homomorphism.

(Proof: ¢(o7) = forf~' = fof ' frf~! = ¢(0)e(T))
Also, verify that ¢ is bijective.
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2. Let ¢ : G — Perm(G) be given by 9(a) = L,.
Verify that 1 is well-defined. ((Ly)™' = L,-1)
Verify that v is a group homomorphism. (¢(ab) = Lay = LoLpy =
¢(a)¢(b))
Verify that ¢ is injective.

(For a,b € G, if ¢(a) = ¢(b), so L, = Ly (as functions), then L,(x) =
Ly(z) for all z € G. So a = Ly(e) = Ly(e) = b)

3. Compose 1 and ¢ from parts (1) and (2).

Example:
Ui2
1 ) 7 11
1 1 |5 |7 |11
5 |5 |1 1117
7T |7 |11 ]1 |5
11 11| 7 1

If we use the bijection f : Uja — {1,2,3,4} given by f(1) =1, f(5) =2, f(7) =
3, f(11) = 4.

Then Uy is isomorphic to the subgroup {(1), (1 2)(3 4), (1 3)(24),(14)(23)} =
Ay < Sy

15 October 11th

Chapter 5: Cosets, Quotient Groups

Definition:

Let G be a group and let H < G.

For a € G, the left coset of H in G containing a is the set

aH = {ahlh € H}
=La (H )
and the right coset of H in GG containing a is the set
Ha = {halh € H}
= Ra(H)
When G is abelian, there is no difference between left and right cosets, so we

just call them cosets.
When G is an additive abelian group, we write aH (and Ha) as a+ H and then
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a+ H ={a+hlh € H}

Exercise:

Think about cosets of (n) =nZ =1{...,—n,0,n,2n,...} in Z.
Theorem:

Let G be a group and let H < G,

1. Fora,b€ G,aH =bH <= a€bH < b lacH
2. For a,b € G, either aH = bH or aHNbH =)
3. Foralla € G, |aH| = |H]|

Proof:

1. Let a,b € G.
e If aH = bH, then a € bH because a = ae € aH.
e If a € bH, say a = bh where h € H, then b"'a = h € H.

Suppose that b='a € H, say b"'a=h € H.

If z € aH, say x = ak with k € H, then x = ak = (bh)k = b(hk) € bH
(since hk € H).

Ify € bH, say y = bl with [ € H, then y = bl = (ahil)l:a(hfll) € aH

2. Part(2) holds because we can (obviously) define an equivalence relation ~
on G by define

a~b < aH =0b0H
(< a€bH < b lacH)
and then, for a € G, the equivalence class of a is
[a] ={be Glb~a}
={beGlbeaH}
=aH

3. Note that for a € H, we have |aH| = |H| because the map L, : H — aH
is bijective with inverse L,-1 : aH — H.
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Notation:
When H < G and, for a,b € GG, we define

a~b <= aH =0H
the quotient G/ ~ is also written as G/H so

G/H = {aH|a € G}

Theorem: (Lagrange’s Theroem)

Let G be a group and let H < G.

Then |G/H| - |H| = |G|

Proof:

This holds because G is the disjoint cosets and the cosets all have size |H|.
Corollary:

Let G be a finite group.

1. If H < G, then |H|‘|G|

2. If a € G, then |a|||G].

Corollary: (Euler-Fermat Theorem)

Corollary:

If a € U,, then a®™ = 1.

Corollary: (The Classification of Groups of Order p)

Let p be a prime number and let G be a group with |G| = p. Then G = Z,,.
Proof:

For any a € G, we have a|’|G. So |al|p, so |a| =1 or p.

The only element of order 1 is e. So all the other elements have order p (and
generate G).

Side Note:
For a,b € Z,
a~b < a—-benZ
< a=bmodn
So Z/nZ = Zr.
Theorem:

Let H < G. Then the following are equivalent.
1. We can define a binary operation on G/H by (aH) (bH) = (ab) H
2. For all a € G and h € H, we have aha™! € H.
3. For all a € G, we have aH = Ha.
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4. For all a € G, aHa™' = H, where aHa™! = {aha™'|h € H = C,(H)}

Proof:

Note that (1) means that for all a,b,¢,d € G, if aH = cH and bH = dH, then
(ab) H = (cd) H. Equivalently, it means that for all a,b,c,d € G, if c™*a € H
and d~'b € H, then d ‘¢ tab = uhu=! € H.

Suppose (1) holds (in the above form)

Let u € Gand h € H. Choose b=d=u"',anda=h and c =e.

Then, cla=he Handd 'b=u-u"'=ec H.

So d~'b~lab € H, that is uhu~! € H.

Suppose, conversely, that (2) holds, (so we have uhu=! € H for all u € G and
he H)

Let a,b,c,d € G with ¢ 'a € H and d~'b € H, say ¢ 'a = k € H, and
d'b=1¢cH.

Then d~'c tab=d 'kb=d ‘kdl € H,

since d"'kd € H (by (2) using u =d~',h = k)

and [ € H.

Let us show that (2) < (3).

Suppose (2) holds, (aha™! € H for all a € G,h € H).

If # € aH, say * = ah with h € H. Then x = ah = aha 'a € Ha, since
aha=! € H.

If y € Ha, say y = ha with h € H, then y = ha = aa"'ha € aH, since
a"tha € H.

This proves that (2) = (3).

16 October 21st

Normal Subgroups
For H <G, a € G, aH = {ahlh € H}.

a~b < beaH < a 'be H
<— a€bH
<— aH =bH

Side Notes:
laH| = [H]|.

For H < G,a € G, |H|’G, lal||G).

Theorem:
Let H < G. The following are equivalent.

1. We can define a well-defined binary operation on G/H by (aH)(bH) =
(ab)H for all a,b € G.

2. Foralla€ G,h € H:aha ' € H.
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3. For all a € G, aH = Ha.
4. For alla € G,C,(H) = aHa ! = H.

Proof:

Proof 1 < 2; Done.

Proof 2 < 3; Done.

Proof 3 «— 2;

Suppose that 3 holds. Let a € G and h € H, by (3), we have aH = Ha.
So in particular, ah € Ha, say ah = ka where k € H.
Then aha™! =k € H.

The equivalence of part 4 is left as an exercise.
Remark:

For a € G, the map C, : G — G given by Cy(x) = axa™
of G.

SoC,: H— Cy(H)=aHa™ .

Hence, aHa ' < G with aHa ' = H.

The groups H and aHa ' are called conjugate subgroups of G.

Definition:

When a subgroup H < G satisfies the equivalent conditions of the above theo-
rem, we say that H is a normal subgroup of GG, and we write H < G.

In this case, the (well-defined) operation on G/H given by (aH) (bH) = (ab) H
makes G/H into a group, which we call the quotient group of G by H.

The identity element in G/H is eH = H.

The inverse of aH is a ' H.

Remark:

When G is an abelian group, every subgroup H < G is a normal subgroup.
Exmaples:

In Z, forn € Z™,

I'is an automorphism

ny=nZ=4{...,—n,0,n,2n....}
and Z/nZ = Z,.

Theorem (The First Isomorphism Theorem)

1. Let ¢ : G — H be a group homomorphism and let K = Ker ¢ < G. Then
K 4G and G/K = ¢(G).
Indeed, the map ® : G/K — ¢(G) given by ®(aK) = ¢(a) is a well-defined
group homomorphism.

2. Let K 4 G. Then the map ¢ : G — G/K given by ¢(a) = aK is a group
homomrophism with Ker ¢ = K.

Proof:

1. Note that K < G where K = Ker ¢ because if ¢ € G and k € K, so
#(k) = e, then aka=! € K since
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d(aka™t)

$a)d(k)d(a) ™!
(a)-e-pla)™"

(a)gp(a)™! =e

-

< ©

a

(We used part (2) of the definition of normal.)

Note that ® : G/K — ¢(G) given by ®(aK) = ¢(a) for a € G is well-
defined because for a,b € G with aK = bK, we have a~'b € K, say
a~'b=ke K =Ker ¢.

So ¢(a=1b) = e, hence ¢(a)Lp(b) = e.
Hence ¢(b) = ¢(a).

Note that ® is a group homomorphism because, for a,b € G

P((aK)(bK)) = @((ad) K)

Side note: ¢ : G — H, K = Ker ¢, ®(aK) = ¢(a),® : G/K — ¢(G).

Note that ® is surjective because given b € ¢(G), say b = ¢(a) with a € G,
then ®(aH) = ¢(a) = b.

Note that @ is injective because for a € G,

PaK)=e = ¢(a)=¢ = a€ K = aK=eK=K

(So that aK is the identity element in G/K).

17 October 23rd

H < G when aha™! € H for all a € G,h € H or when aH = Ha for all a € G.
Then G/H is a group under (aH) (bH) = (ab)H for a,b € G.
Theorem: (The First Isomorphism Theorem)

1. If ¢ : G — H is a group homomorphism, and K = Ker ¢, then K < G
and G/K = Image(¢) = ¢(G).

Indeed, the map ® : G/K — ¢(G) given by ®(aK) = ¢(a) is an isomor-
phism.
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Examples:

The map ¢ : G — H given by ¢(a) = e is a homomorphism. We have Ker ¢ = G
and Im ¢ = {e} and G/G = {e}.

The map ¢ : G — G given by ¢(a) = a for all a € G, is a homomorphism.

We have Ker ¢ = {e} and Im ¢ = G and G/{e} = G.

For n € Z*, the map ¢ : Z — Z, given by ¢(k) = k is a homomorphism,
Kergp=nZ=(n)={...,—n,0,n,2n,...}

Im ¢ = Z,

Z/nZ =T,

(Indeed, Z/nZ = Z,,).

The map ¢ : R — S! given by ¢(t) = €™ is a homomrophism with Ker ¢ = Z
and Im ¢ = S'. So R/Z = S*.

The map ¢ : C* — R given by ¢(z) = |z| is a homomorphism (since |zw| =
|z||w|) with Ker ¢ = S! and Im ¢ = RT.

So C*/S! ~ R+

The map ¢ : C* — C* given by ¢(z) = é is a homomorphism, (since % =
ﬁ : |1w7\) with Ker ¢ = Rt and Im ¢ = S!.

So C*/R* = S!.

Note also that

C* =Rt xSt

with an isomorphism

¢:RT xSt - C*
given by ¢(r, e??) = re??
When R is a commutative ring with 1, the map

¢:GLy(R) - R*

given by ¢(A) = det(A) is a group homomorphism with Ker ¢ = SL,,(R) and
a

1
Im ¢ = R*. (Since a € R*, det . =a)

1
So SL,(R) < GL,(R) and GL,(R)/SL,(R) = R*.
Let G be any group. Then the map ¢ : G — Aut(G) given by ¢(a) = C, where
C, : G — G is given by C,(z) = aza™! for x € G, is a group homomorphism
with
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Ker ¢ ={a € G|C, =1}
={a € G|Cy(z) =z for all z € G}
={a € Glara™' =z for all z € G}
= {a € Glaz = za for all x € G}
= Z(G) (The centre of G)

and Im ¢ = {C,|a € G} = Inn(G)

So Z(G) < G and G/Z(G) = Inn(G).
Example:

Let H = Span,{(2,6), (6,3)} < Z2.

Show that Z2?/H = Zso and find a homomorphism ¢ : Z% — Zsq with Ker ¢ =
H.

Sketch Solution:

A graph here, see pictures.

(0,00+H=H

(1,0)+H

(10,0) + H = H since (10,0) € H.

In G/H, the order of (1,0) + H = 10.
Verify that G/H is generated by (1,1) + H.

2 6
det(6 3) =|—30| =30

So G/H is cyclic of order 30.

G/H = Zgo.

Define ¢ : Z? — Zso by ¢(k(1,1) + H) = k, or equivalently by ¢((k,l) + H) =
9k — 8.

Verify that for ¢ as above, we do have Ker ¢ = H

Side Note:

To get ¢p(k(1,1)+H) = k, weneed ¢((1,0)+H) = 9and ¢((0,1)+H) =22 = 8.
If (k,l) € H, say

(ka l) - 5(23 6) + t(6a 3)
= (28 + 6t, 65 + 3t)

for some s,t € Z
and then

9k — 81 = 9(2s + 6t) — 8(6s + 3t)
= —30s + 30t
= 30(t — 3)

So 9k — 8l =0 mod 30
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Hence, ¢((k,l)+ H) =0 € Zs
Verify that if 9k — 8/ = 0 mod 30, then

(k1) = s(2,6) + £(6,3)

for some s,t € Z.

(=) ()
=()-G90C)
YO0 90

A group G is called simple when G has no non-trivial proper normal subgroups.
Exercise: (Fairly hard)
Show that for n > 3, A,, is simple.

18 October 25th

Theorem: (Characterization of Internal Direct Products)

Let G be a group and let H, K C G. Suppose H < G, K < G, HNK = {e}
and HK = G (where HK = {abla € H,b € K}). Then G = H x K. Indeed,
the map ¢ : H x K — G given by ¢(a,b) = ab is an isomorphism.

Proof:

We claim that ¢ is a homomorphism.

For a,c € H and b,d € K. We have

¢((av b) ’ (Ca d)) = ¢(ac7 bd)

= acbd
and
#(a,b) - d(c,d) = abed
= acc tbeb™10d
= acebd
= acbd
because
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ctbebt =c M beb ) € H

Since ¢! € H,beb™! € H. Since H < G.
and

ctoch ™t = (cthe)b Tt € K

Since b=! € K and ¢ lbc € K.
So we have

clhebl e HNK = {e}

Note that ¢ is surjective since HK = G. (So every element in G is of the form
ab for some a € H,b € K)
Also, ¢ is injective because for a € H,b € K, we have

¢a,b) =e=ab=e
=ag=0b""!
= g and b~! are both in H N K = {e}
=a=bl=¢
= (a,b) = (e, €)

Theorem (Classification of Groups of Order 2p)

Let p be a prime number and let G be a group with |G| = 2p. Then, either
G =2 Zyp or G = Dy,

Proof: Exercise.

Theorem (Classification of Groups of Order p?)

Let p be a prime number and let G' be a group with |G| = p?. Then, either
G = Zy2 or G = 7Ly X L.

Proof:

For a € G. Since |a|'|G|, we have |a| = 1,p, or p?.

Suppose G 2 Z,2. So G is not cyclic. Then G has no elements a € G with
la| = p*.

So every e # a € G has order p.

Let e # a € G. We claim that (a) < G.

Suppose, for a contradiction, that (a) 4 G.

Side Note:

H <G when zha™' € Hforallz € G, h € H.

Choose = € G and a” € {(a). So that za*z~! ¢ (a).

It follows that zax~! ¢ (a), since if we had zaz~! € (a), then we would have
(:mxfl)k € (ay, but (xam’l)k = rar trar~'.. . zax™! = zaFzt.

Since xaz~! # e, . |[vax~ = p.

Since (a) and (wax~!) are distinct p-element subgroups of G, (a) N (zaxr~!) is a
proper subgroup of (a) whose only subgroups are {e} and (a) (because (a) = Z,
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Thus, {(a) N (xax_ )y ={e}
Since (a) N (zaz~') = {e}, it follows that the cosets,
e{rar™t), alraz™t), a*(zaxt), ... a?P~H{zaxr™!) are all distinct. Indeed

a*(zaz™') = d'(zaz™!) = € (zaz™")
=a'" <> (raz™") = {e}
=adF*=e
= al = ak

Since |G| = p? and these p-element cosets are distinct, G is the union of these
cosets.

In particular, 2~ lies in one of the cosets, say 27! € a¥(xaz~1), say 27! €
ak (xaac_l)l = aFralz~.

Then, ¢ = afzal.

So x =a"*! € (a).

Hence, zaz~! € (a), which contradicts our choice of z.

This proves that (a) < G. Since e # a € G was arbitrary, (a) < G for all a € G.
Let e # a € G. Choose b € G with b ¢ (a). Then (a) and (b) are distinct,
p-element cyclic subgroups of G.

So (a) N (b) = {e}

(Since it is a proper subgroup of (a) = Z,).

As above, it follows that the cosets e(b), a(b),a?(b),...,aP~1(b) are all distinct.
(if a*(b) = a'(b), then a!=* € (b). So that (a) < (b)).

As above, (G is the union of these distinct cosets.

Thus, every element in G is of the form a*b' for some k.1 € Z.

So we have

G = {a)(b)
Since (a) 4 G, (b) < G, {a) N (b) = {e}, and G = (a)(D).
and so we have
G = {(a) x (b) = Zy, X Ly
by the Characterization of Direct Products.

19 October 28th

Group Actions and Representations

Definition:

A representation of a group G is a group homomorphism, p : G — Perm(S)
for some set S.

An injective representation is called faithful.
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When p : G — Perm(S) is faithful, we sometimes identity G with the isomorphic
group p(G) < Perm(QG).

An action of a group G on a set S is a function * : G x S — S, where for a € G
and x € S, we write x(a,x) as a * z or sometimes just as az, such that

1. ex=x for all x € S and

2. a(bx) = (ab)x for all a,b € G and x € S.

Note that there is a natural bijective correspondence between the set of all group
actions of G on S and the set of all representations p : G — Perm(S).
The action and its corresponding representation are related by

a+x = pla)(x)

forae Gand x € S.

Example:

When G acts on itself by left multiplication. (So a * z = ax for all a,z € G),
the corresponding representation p : G — Perm(G) is given by p(a)(z) = az,
that is p(a) = I, where l, : G — G is given by l,(x) = ax.

This representation is faithful (since for a,b € G, if I, = I, then l,(z) = ly(x)
forallz € G. Soa=a-e=1,(e) =l(e) = be = b)

This was used in the proof of Cayley’s Theorem.

Example:

When G acts on itself by conjugation, that is when

a*x=ara !

The corresponding representation p : G — Perm(G) is given by p(a)(x) =
ara~! = C,(z), that is p(a) = C,, where C,, : G — G is given by C,,(x) = aza™*

We have

Im(p) = p(G) = Inn(G)

and Ker(p) = Z(G)

So we have Z(G) < G and G/Z(G) = Inn(G)

Example:

Let R be a commutative ring with 1.

When GL,(R) acts on R"™ by matrix multiplication. The corresponding repre-
sentation p : GLy(R) — Perm(R™) is given by p(A)(z) = Ax = La(x) where
Ly : R™ — R" is given by Lu(x) = Az, so we have p(A) = L4. This repre-
sentation is faithful (and we often identify a matrix A with its associated linear
map p(A) = La)

Definition:

Let G be a group which acts on a set S.

When a € G, the fixed set of a is the set

Fix(a) = Fixg(a) ={z € Slax =2} C S
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For xz € S, the orbit of x is the set

Orb(z) = Orbg(z) = {azla € G} C S
For x € S, the stabilizer of z is the subgroup

Stab(x) = Stabg(z) = {a € Glaxr =2} < G

Note that Stab(x) < G because e € Stab(z) since e -z = z.
If a,b € Stab(z), so ax = z and bx = .
Then (ab)(z) = a(bx) = ax = z.

So that a,b € Stab(x), and if a € Stab(z), so azx = x.

Then a 'z = a '(ax) = (a7 la)r =ex = x

So that a=! € Stab(z)
Example:
When SO3(R) = {Ry|0 € R} acts on R?, for u € R?

Orb(u) = {Au|A € SO,(R)}
= {z € R?[|z| = |u[}

When SO,,;1(R) acts on R"*! and e, 41 = (0,...,0,1)T

Orb(6n+1) = {A67l+1|A S SOn+1(R)}
=8" = {u e R""|ju| = 1}

(Since Aey,41 is the last column of A, which can be any unit vector and

Stab(€n+1)
={A € SO,+1(R)|Aent1 = €ni1}

{[ﬁ ?bBeSOMM}

)

Example:
When G is a group and H < G and H acts on G by right-multiplication, that
is hxx =xh for h € H and = € G, the orbit of an element a € G is

Orb(a) = {ah|lh € H}
=aH
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20 October 30th

A representation of G is a group homomorphism p : G — Perm(S) for some
set .S.

An action of G on S is a map * : G x S — S, where we write *(a,x) as a * x
and sometimes as ax such that

ex=xforallz el

a(bx) = (ab)z for all a,b € G,z € S.
These are the same thing:

pla)() = axe

Fix(a) = {z € Slax = 2z}, Orb(z) = {az|a € G}, Stab(z) = {a € Glax = z}

When a group G acts on a set S, we can define an equivalence relation ~ on S
by

r~y < y=a-x forsomeacG
<= y € Orb(x)

This is an equivalence relation because

Tr~T

Since z = ex € Orb(x)
If x ~y, say y = az, then

Soy ~ .

Andif x ~y and y ~ 2

Say y =a-x and z = b -y, then z = by = b(ax) = (ba)z
So x ~ z.

Note that, using this equivalence relation,

[z] = {y € S|z ~ y}
={y € Sly =a-x for some a € G}
= {az|a € G}
= Orb(x)

]



We write S/ ~ as S/G.
So

5/G = {[z]|z € S}
= {Orb(z)|z € S}

and S is the disjoint union of the disjoint orbits.

Examples:

When H < G and H acts on G by right multiplication, so h * a = ah for
ace G heH

We have Orb(a) = {ah|lh € H} = aH

In this case, our new notation G/H agrees with our previous notation

G/H = {aH|a € G}

(When H acts on G by left multiplication, so h x a = ha for h € H,a € G, our
new and old notations do not agree)

Theorem (The Orbit / Stabilizer Theorem)

Let G be a fintie group which acts on a set S. For each = € S,

|Orb(z)| - [Stab(z)| = |G|

Proof:
Let z € S, let H = Stab(x) < G.
We know (from Lagrange’s Theorem)

|G| = |G/H| - |H|
‘We need to show that

|Orb(z)| = |G/H| = |G/Stab(x)|

Define F : G/H — Orb(z) by F(aH) = ax for a € G.
Note that F is well-defined, because, for a,b € G, if aH = bH, then b~la €
H = Stab(x).
So (b7ta)(z) ==z
Hence, ax = bz.
F is clearly surjective. Note that F is injective because for a,b € G. If F(aH) =
F(bH), then ax = bx.
So b~lax = .
Hence, b~'a € Stab(z) = H.
Hence, aH = bH.
Theorem (Burnside’s Counting Lemma or
The Cauchy-Frobenius Counting Lemma)
Let G be a finite group which acts on a finite set S.
Then 1
15/G| = Il > [Fix(a)l

aceG
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Proof:
Let T = {(a,z)|a € G,z € S,ax = z}
Then |T| =) ,cq {z € Slar = 2}| = > . [Fix(a)| and

7] =" [{a € Glax = x}|
T€S

= [Stab(x)]

€S
- 6l
2 Orb(a)

- > Yi

AeS/GzeS

= > Gl

AeS/G
— |clis/q]
Thus, |G][S/G| = ¥ e [Fix(a)|

Example:

Find the number of ways to colour the 6 vertices of a regular hexagon using 3
colours, up to equivalence under symmetry under the natural action of Dg.
Example:

Find the number of ways to colour the 8 vertices of a cube, up to symmetry
under the group of rotations in SO3(R) of the cube, using 2 colours.
Solution:

Let G be the group of rotations of the cube and let S be the set of all possible
28 colourings of the vertices (ignoring symmetry).

G acts on S and we need to find |S/G].

A picture here, refer to the photos.

If we fix a vertex x, then under the action of GG, on the 8 vertices of the cube

|G| = [Stab(z)| - [Orb(z)]

We have |Orb(z)| = 8 and |Stab(x)| = 3. Hence, |G| = 24.
Pictures here. Refer to the photos.

21 November 1st

The table below comes with accompanying pictures. Refer to photos.

Type of A | # of such A | |Fix(4)]
I 1 28
RV,:I:%" 8 24
Rpx 6 21
RF,:N:% 6 22
Rpx 3 94
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Thus, we have

1 .
15/G| = @ > [Fix(4)]

AedG
1
:ﬂ(1-28+8-24+6-24+6-22+3-24)
1
=3 (324+16+12+3+6)
=23

If we use n colours, we get

1
|S/G\:ﬂ(1~n8+8-n4+6n4+6n2+3n4)
1

= 5 (0 + 170" 4 6n%)

In particular, n® + 17n* +6n%2 =0 mod 24 for all n € Z*.

Theorem (The Class Equation)

Let G be a finite group. Let m be the number of conjugacy classes in G.
(The conjugacy class of x € G is Cl(z) = {aza"t|a € G})

Choose elements 1, -, x,, with one from each conjugacy class.

Then

G = 1G/Clay)|
k=1

where C(zy) = {a € Glax,, = xra}, which is the centralizer of z;, in G.
Proof:
When G acts on itself by conjugation, (so a * z = axa™?!) for x € G,

Orb(z) = {azxa™'|a € G} = Cl(x)

and

Stab(z) = {a € Glaza™' =2} = C(2) < G
By the Orbit / Stabilizer Theorem, |G/Stab(z)| = |Orb(x)|

Since G is the disjoint union of the orbits, (and we selected one element xj from
each orbit)

m

|Orb(ax)| = > |G/Stab(xy)|

1 k=1

NE

G| =

k

G/C (k)|

NE

>
Il
—
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Theorem (Cauchy’s Theorem)

Let G be a finite group with |G| = n.

Let p be a prime factor of n. Then G has an element of order p.
In fact, we shall prove that

l{a € Glla| =p}|=p—1 mod p(p —1)

Proof:
Let m = |{a € Glla] = p}|
Note that m =1 — 1 where

l={a € Gla? = e}

Recall that m is a multiple of ¢(p) =p — 1.

Som=0 modp—1

Som=p—1 modp—1

It remains to show that m =p —1 mod p.

Let S = {(z1,22,...,2p)| each z, € G and [[zr = e} and Z, act on S by
cyclic permutation, so

ks (x1,20,...,2p) = (Tht1, Thy2, - -, Tp, T1, Th)

Then for z = (z1,...,2p) €S

1 ifz=(a,a,...,a) where a € G with a? = e

|Orb(2)| = {

p otherwise

Since S is the disjoint union of the orbits
[S|=1-1+p-t
So that [ = |s| mod p, but also we have

IS|=n?"'=n=0 modp

(Since we can choose 1, . .., £p—1 € G arbitrarily and then z,, = (21, z2, . .. ,xp_l)_l
to get [[zr =€)
Hence,

=0 modp

Som=I]l—1=—-1=p—1 mod p as required.

22 November 4th

Theorem (The Classification of Finite Abelian Groups)
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1. Every finite abelian group is isomorphic to a unique group of the form
iy X Lipy X ... Ly, for some [ > 0 (I = 0 gives the trivial group) and some
n; € 7+ with nl\ng, RQI’II3, A ,nl_1|nl.

2. Every finite abelian group is isomorphic to a unique group of the form
Ly, wr X Lipyky X ... Ly ko for some m > 0, and some primes pi,...,pm
with p; < py < -+ < p,, and some k; € Z* with k; > k;11 when p; = p;11

Recall that for k,1 € ZT, Zy X Zy & 7y, < ged(k,l) = 1.

Preliminary Definitions

Definition:

A free abelian group of rank n is a group which is isomorphic to Z".
Remark: In this chapter, we use additive notation for abelian groups.
Note that the rank of the abelian group is unique: G =2 Z"™ and G = Z™ with
n,m € ZT, then we must have n = m.

Sketch Proof:

If G=ZZ" and G = Z™, then we have Z"™ =2 Z™.

Let ¢ : Z™ — 7Z™ be an isomorphism.

Note that ¢ restricts to an isomorphism, ¢ : 2Z™ — 2Z.™.

Verify that ¢ determines an isomorphism

O 220" — T 2T
Also, verify that Z" /27" = (Z3)".
It follows that
(Zo)" 2727 = 7™ 27 = (Za)™
So

23] = |Z3"|

That is 2" = 2™. Hence n = m.

Familiar Terminology:

Let G be an abelian group, and let S C G. A linear combination (over Z) of
elements in S is an element in G of the form

!
E tiu;
i=1

with [ > 0, each t; € Z, and each u; € S.
(If we want, we can require that the u; are distinct.)
The span of S (over Z) is the set of linear combination:

l
(S) = Spany(S) = {Z tiu;|l >0, each t; € Z, each u; € S}
i=1
We say that S spans G (over Z) with G = Spany/(.S).

98



We say that S is linearly independent (over Z), when for all t; € Z and u; € S
distinct, if 22:1 t;u;, then each t; = 0.

We say that S is a basis for G (over Z), when S is linearly independent and
spans G.

An n-element ordered basis for G is an n-tuple, (u1,us,...,u,) of distinct ele-
ments in G such that {uy,us,...,u,} is a basis for G.

Side Note: Drop the repetition?

Note:

A group G is a free abelian group of rank n if and only if G has a basis with n
(distinct) elements.

Sketch Proof:

If G is abelian, G = Z™ and ¢ : Z" — G is an isomorphism, then for u; =
dler) = ¢(0,0,0,...,1,0,...,0) (1 at k*" position.)

The set {ug,...,u,} is a basis with n distinct elements.

Conversely, if {u1,...,u,} is a basis for G with distinct elements, then the map
¢ Z" — G given by @(t1,...,t,) = >, t;u; is an isomorphism.

Note:

When (uq,...,u,) is an ordered basis for the free abelian group G, we can
obtain new basis by performing any of the following 3 operations

1. u— Fuy (replace up by Fuyg)
2. uy <> w; (interchanging ug with u;)

3. u > ug + tu; with ¢t € Z (replace ug by ug plus an integer multiple of w;
when [ # k)

Side Note: Analogy to kv, k € Z

O

is linearly independent (over Z).

s {(2).(9))

is a free abelian group of rank 2.

Proof Later?

Also, check picture.

Theorem (Classification of Subgroups and Quotient Groups of Finite
Rank Abelian Group)

Let G be a free abelian group of rank n, let H < G. Then H is a free abelian
group of rank at most n. In other words, 0 < r < n. (with » = 0 giving the
trivial group H = {0} which consider to be a free group with empty basis), and
there exists integers, d;,da, . ..,d, € ZT with di|dz, ds|ds, . .., d,_1|d, such that

G/ngdl X Lgy X ... Lq, x 7"
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Sketch Proof:

To prove this, we shall show that there exists {uj,uz,...,u,} for G and there
exist dy,da,...,d, as above such that {djui,dsus,...,d.u.} is a basis for H
with each dl € ZJF with d1|d2, dQ‘dB, . 7dr_1|d7«.

If we can find a basis {u,us,...,u,} for G and a basis {diu1,...,d,u,} for H.
Then, as an exercise, verify that the map ¢ : G — Zg, X ... Zq, X Z"™" by
¢ (X0 tiu;) = (t1,...,t,) is a well-defined surjective group homomorphism
with Ker(¢) = H.

So that we have

G/HgZdl XZd2 X ~'~Zdr x 7"

We shall prove that such bases for G and H exist by induction on n, the rank
of G

When n =0, (so G = {0}), there is nothing to prove.

Can start at n = 1, use the knowledge of cyclic group. Not necessary.

Let n > 1, (or n > 2) and suppose the theorem holds for all free abelian groups
Gy of rank n — 1 and all subgroups Hy < Gp.

Let G be a free abelian group of rank n and let H < G.

If H = {0} is trivial, there is nothing to prove. (the empty set is a basis for
H = {0} and we take r =0 )

Suppose H # {0}, note that if 0 # a € H and {v1,...,v,} is any basis for
G. Then when we write a = Z?:l t;v; with each t; € Z, at least one of the
coeflicients ¢; # 0.

Choose d; to be the smallest positive integer (Main trick of the theorem!!) which
is equal to one of the coefficients ¢; in some linear combination a = 2?21 tiv;

for some @ € H and for some basis {vy,...,v,} for G.
Choose a particular basis {v1,...,v,} for G and a particular element a € H of
the form

a=dvy +tovg +---+t,v, € H

Note: by our choice of dy, d;|t; for 2 < i <, since 2 < h < n..
We can write
ly,=q-di+r

for0<r<d.
Then we have

a=dyw; +tovg+ -+ (qg-di+7)vpg + -+ tho,
=di(v1 +q - vg) +tav2 + -+ U+ U,
So, we must have r = 0, (if 0 < r < d;, this would contradict our choice of dy,
since {vy + qug, V2, V3, ..., v, } is another basis for G).
Write t, = q-dq for 2 < k <n.
Then a = dy (v1 + gava + -+ + @ Up).
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Let uy = v1 + qava + -+ + gnvn (So a = dyjuy € H)
and note that {uy,ve,vs,...,v,} is another basis for G.
Let Gy = Spany{vs, vs,...,v,} which is a free abelian group with rank of n —1.
Let Hy = HN Gy < Gp.
We claim that every element b € H, can be written uniquely in the form b =
tidiur + C with ¢t1 € Z, ¢ = Hy.
Let b € H, since b € G, we can write b uniquely as b = s1u1 + Sov2 + ..., S, Un-
(Since {uq,ug,...,v,} is a basis for G).
Note that di|s; using the same argument used above (writing s;1 = ¢ -d+ 7))
Since d;|s;, s1uq is a multiple of d,, = a € H.
So sju; € H.
Hence

SoUg + -+ -+ Spvy = b —s1u; € H

We have b = squy + ¢ = t1dius + ¢ with ¢ € H.

By the induction hypothesis, we can choose a basis {us ..., u,} for Go. And a

basis dQ’LLQ, ey drur for H(] with d2|d3, d3|d4, . 7d7~,1|dr

Also ¢ € Gg = Span({va,...,v,}), so ¢ € Hy.

Thus, every b € H can be written uniquely in the form b = t1dju; + todous +
s+ tedrug.

Thus, {dju1,...,du,} is a basis for H.

Finally, verify that d|ds.

Examples:

Let G=7Z2=7ZxZ

and let H = Spany {(3,6), (6,2)}

Note that H has the following bases

{(3,6),(6,2)}
{(3,6),(6,2) + (3,6)} = {(3,6), (9,8)}

{(3,6) +3(9,8),(9,8)} = {(30,30), (9,8)} = {1-(9,8),30(1,1)}

)
Also note that {(9,8),(1,1)} is a basis for G =Z x Z.
Since (1,0) = (9,8) — 8(1,1) and (0,1) =9(1,1) — (9,8)

—1
9 1 9 1 1 -1
det(s 1)1’(8 1> <—8 9)
It follows that n = 2,r = 2,
G/HgZ1X230XZOgZ3O
H = Span{uy,...,ux}
A:(u1-~-uk)€Mn><k

Row operations and column operations can convert A to the form
Picture here.
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Theorem: (Classification of Finite Abelian Groups)
Let G be a finite abelian group.

1. G is isomorphic to a unique group of the form
Ly X Lipy X =+ X L,
with [ € Z with [ > 0 and each n; € Z with n; > z and nq|na,...,ni_1|ny.
2. @ is isomorphic to a unique group of the form
kal X ZPQIQ X oo X Loy o

where m € Z with m > 0, each p; is prime with p; < py < --- < p,,, each
k’i € Z with ]{11 Z 1 such that if Pi = Di+1, then k’l S ki—i—l-

Sketch Proof:

Let n = |G| and say G = {a1,...,a,}.

Define ¢ : Z" — G by ¢ (t1,...,tn) = Do tia;.
Verify that ¢ is a surjective group homomorphism.
By the First Isomorphism Theorem,

G =2 7Z"/H where H = Ker ¢

By the previous theroem, we have
G Zn/H 2 Zd, X Lq, -+ X Lq, % 7z

for some 0 < r < n and some d; € Z*
with some d; € 7+ with dlldg, d2|d3, e ,dr,1|dr.
Note that we must have n = r since G is finite.
So

G%Zdl XZd2 X ~--Zdn
Sayd1 :d2:~~-:dk:1anddk+1 22
Then we can take n; = dy; for i <i <[ wherel =n — k.
This puts G up to isomorphism, into the form in Part (1).
Verify that there is a bijective correspondence between the forms described in
Parts (1) and (2).
Examples:

Ty X Zg X Zgo X L3600
= Zo X Za.3 X Lo2.3.5 X Los.32.52
2 Tio X Zig X Lz X Ligz X Lz X Ls X Liga X Ziz2 X L2
X Tio X Tig X Tigz X Tiga X Zig X Lz X Lig2 X L X Lig2
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and

ZQI X Z22 X ZQQ X Z23 X Zgl X Zgzk X 234 X Z51 X Z52
= Zgl X (Z22 X Zgl) X (ZQQ X Z34 X Z51) X (ZQ% X Z34 X Z52)
= Zio X Zig2.3 X Lig2.34.51 X Lig3.34.52

Finally, we verify that the form of Part (2) is unique (up to isomorphism)

Let G = Z, 51 X Ly ks X === X Ly, as in Part (2).

We shall show that the prime powers p;* are determined from the number of
elements in G of each order.

Fix a prime p, let ny = the number of @ € G with |a|/p*. (That is |a| €
{1,p,p%...,0"})

Let ar = the number of indices ¢ such that p; = p and k; = k.

Let by = the number of indices ¢ such that p;, = p and k; > k.

Recall that if a; € Z,x. So a = (a1,...,am) € Zpn X ...Zy km, then
la| = lem (Jaq], .- ., |am])

Side Note:

In Z,x, there are ¢(p) = p — 1 elements a with |a| = p. So that there are p
elements a with |a| =1 or p

We have

ny = # of a € G such that |a| =1 or p
:pbl

(there are p choices for each Z,, «, with p; = p,k; > 1)

ny = # of a € G such that |a| = 1,p, or p?
— pa1 _p2b2

(there are p choices for each L, x; With p; = p, ki = 1 and there are p? choices
for each Z, », with p; = p, k; > 2)

nS — pa1p2a2p3b3

and so on, solution

2as . .p(k—l)ak,1 kb

ng = p*p P

Also, note that

ar = by, — by

It follows that
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(k*l)ak_l k}bk

ng _p p

Np—1 B p(k’_l)bkfl

p(k_l)akflpkbk
p(kfl)(ak—1+bk)

= pbk

Hence

pak _ pbk—bk+1 _ pbk/pkarl

ng  Nk41

Ng—1 Nk

nk2

Ng—1Mk+1
nkQ
ap = logp _
Ng—1Mk+1

U2 = Zl,U4 = ZQ7U8 = Zg X ZQ7U27L = ZQ X ZQn—2 for n > 3

Fact (Gauss)

and
Upr = L pr)
where ¢(p*) = p* — pF~1L.

25 November 11th

Chapter 8 Rings

Definition:

A ring is a set R with an element O € R and two binary operations + and X
such that

1. + is associative

2. + is commutative

3. O is an additive identity

N

. Every a € R has an additive inverse

5. X is associative

6. x is distributive over 4 for all a,b,c € R, a(b+¢) = ab+ac and (a+b)c =
ac + be.
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R is commutative when X is commutative.

R has an identity (or R has a 1) when there is an element 1 € R with 1 # 0
such that 1-a=a-1=a for all a € R.

When R has a 1 and a € R, we say that a is invertible, or that a is a unit, when
there exists b € R such that ab =ba =1

A field is a commutative ring in which every non-zero element is invertible.

In any ring R, we have 0-a = 0 for all a, (also a-0 =0 for all a € R).

Proof:

Let a € R, then 0-a = (0 + 0) by property (3)

Then =0-a+ 0 a by property (6)

By (4), we can choose b € R such that 0-a +b = 0.

Then we have

0-a=0-a+40-a (as above)

0-a+b=(0-a+0-b)+b=0-a+ (0-a+10d) by (1)
0=0-a+0since0-a+b=0.

5.0=0-aby (3).

Note that we do have additive cancellation:

Ifa+b=a+corifb+a=c+ a, then b=c.

In general, we do not have multiplicative cancellation, (ab = ac does not imply
that b = ¢).

In a ring R, we say that a and b are zero divisors when a # 0,b # 0,a-b = 0.
Example:

Zg we have 2 -3 = 0.

The multiplicative cancellation rule is as follows:

For all a,b,c € R, if ab = ac, then either a = 0 or a is a zero divisor or b = c.
An integral domain is a commutative ring with 1 with no zero divisors.

In an integral domain, R, for all a,b,c € R, if ab = ac, then either a = 0 or
b=c.

Note that units are never zero divisors.

If w is a unit, say uv = vu = 1, then if we had u - b = 0, then we would have

0=v-0=v(u-b)=(vu)-b=1-b=1>

Example:

In Z,,, the units are the elements in U,, = {k € Z,|gcd(k,n) = 1}. All other
elements are zero divisors. 0 # k € Zj,, and ged(k,n) # 1, we can choose a
prime p with p|k and p|n. Then if we write n = p -, then k-1 = 0.

In M, (R), the units are the elements in

GLn(R) = {A € M,(R)|det(A) # 0}

and all other non-zero elements are zero divisors since when det A = 0, we can
choose 0 # u € R™ such that Au =0 and then AB = 0 where

B = (u,u,...,u) (or B(u,0,0,...,0))

If F is a field, all non-zero elements are units and F has no zero divisors.
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If F is a field and R is a subring of F with 1 € R, then R is an integral domain.
Note:

If an element a € R has a left inverse and a right inverse, then these inverses
are equal to each other, so a is invertible.
(Ifab=1landc-a=1,thenc=c-1=c(ab) = (ca)b=1-b=0)

Using addition and multiplication.

In the ring C° (R,R) = {continuous functions f : R — R}. The units are the
functions f : R — R* (the functions such that f(z) # 0 for all z € R and the
inverse of f is the function g : R — R given by g(z) = ﬁ)

Exercise:

Verify that the zero divisors are the functions f : R — R such that for some
a < b we have f(z) =0 for all z € [a, D].

A picture here.

Definition:

For a ring R with 1, the characteristic of R is

the smallest n € ZT for whichn-1=0

0 if no such n € Z* exists

char(R) = {

Note:
If char(R) =n € Z*, then we have n-a = 0 for all a € R, because

O=n-a=01+1+4+---1)a
=n-1)a=0-a=0

Exercise:

Verify that if R has no zero divisors, and if char(R) = n € Z™", then n is prime.
Example:

char Z = char Q = char R = char C = 0 and char Z, = p.

Note:

When R is a ring and S C R is a subset of R, S is a subring when

0 € S5,S closed under +, —, and x

That is, for all a,b € S, we have a+b € S,—a € S, and ab € S.

26 November 13th

Chapter 9: Ring Homomorphisms and Quotient Rings

Definition:

When R and S are rings, a ring homomorphism from R to S is a function
¢ : R — S such that ¢(a + b) = ¢(a) + ¢(b) and ¢(a - b) = ¢(a) - ¢(b) for all
a,b € R.
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A ring isomorphism from R to S is a bijective ring homomorphism from R to
S. We say that R and S are isomorphic (as rings), and we write R = S, when
there exists a ring isomorphism ¢ : R — S.
Check that when ¢ is a homomorphism from R to S, we have ¢(0) = 0.
If R has a 1 and ¢ is surjective, then S has a 1 and ¢(1) = 1.
Examples:
¢ :Z — 7 x 7 given by ¢(k) = (k,0) is a (non-surjective) ring homomorphism
and ¢(1) = (1,0) which is not equal to the identity element (1,1) in Z x Z.
(Think about ¢ : Z — Z[i] given by ¢(1) = 1 = (1,0) where Z[i] = {(a,b)|a +
ibla,b e Z} CC.)
Check also that when K C R is a subring, ¢(k) C S is a subring and when
L C S is a subring, $~1(L) C R is a subring.
In particular,

Image(¢) = ¢(R) C S is a subring

and
Ker(¢) = ¢~*(0) C R is a subring
Check that ¢ is surjective <= Image(¢) = S
and ¢ is injective <= Ker ¢ = {0}.
Examples:
The subgroups of Z are of the form (n) = nZ where n € N.
These are all subrings. Similarly, the subgroups of Z,, are the groups

(d) = dZ,, = {dk|k € Z}

where d is a positive divisor of n. These are also subrings.
In Z[i], the subgroup generated by (2,1) =2+ is

(2+1) = {k(2+19) |k € Z}

(which is a free abelian group).
Picture here.

Is this a subring of Z[i]?

It is not because, for example

(2414)(2+1) =3 +4i
The smallest subring of Z[i] which contains (2,1) = 2 + ¢ is the ring
Span{(2+ i), (—1 4 2i)} = (2 + 4, —1 + 2i) = (2 + i)Span{1 + i} = (2 + i)Z[i]

(which is also a free abelian group under +)

(Verify this!)

Examples:

In Q, the subgroup generated by 3 is (3) = 3Z = {£|k € Z} and the smallest
subring of Q which contains % is

{;‘kez,neN}
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(Verify this!)

Quotient Rings

Note: When R is a ring and A C R is a subring, A is also a subgroup under
addition. And + is commutative, so A < R so we can form the quotient group

R/A = {r+ Alr € R}
with the operation given by
(r+A)+(s+A)=r+s)+A4
When can we define a product operation by
(r+A)-(s+A)=rs+A

to obtain a ring structure on R/A.

Exercise:

If A is closed under addition by 77?7

Theorem:

Let R be a ring and let A C R be a subring. Then we can define a well-defined
multiplication operation on the quotient group R/A = {r + A|r € R} by the
formula (r + A)- (s + A) = rs+ A if and only if A is closed under multiplication
by elements in R, that ar € A and ra € A for all a € A and r € R.

Proof:

To say that the operation

(r+A)(s+A)=rs+ A

is well-defined means that for all 7,72, 51,52 € Rif r1+A = ro+ A (equivalently
ro—11 € A) and $1 + A = so + A (equivalently s, — 51 € A), then we must have
181 + A =198y + A.

(Or equivalently rosy — r1s1 € A)

Suppose the operation is well-defined, let @ € A and » € R. Then taking
rim=r9=rand sy =0and sp =asothatro —r; =0€ A and s —s; = a € A,
we have ros9 — 17181 € A, that isra—r-0=ra € A.

A similar argument shows that a-r € A.

Suppose, conversely that A is closed under elements in R.

Let r1,79,81,82 € R, withro — 71 € Aand so —s1 € A, say ro—7r1 = a € A and
so—s1=be A

Then

ToS2 — 1181 = 1289 — (12 — a)(s2 — b)
= 189 — (1282 — rob — asg + ab)
=1r9b+ asy — ab
€A

As long as the operation is closed, then it is well-defined.

68



27 November 15th

Theorem

If A C R is a subring, then we can define an operation on R/A = {r + A|r € R}
by (r + A)(s+ A) = (r-s)A for r,s € R if and only if A is closed under
multiplication (on the left and on the right) by elements in R.

In this case, R|A is aring under (r+A)+(s+A) = (r+s)+Aand (r+A)-(s+A) =
(r-s)+ A

(r+A)((s+A)+(t+ A))
=(r+A)((s+t)+ A)
=r(s+t)+ A4
=(rs+rt)+ A
=(rs+A)+ (rt+ A)
=(r+A)(s+A)+(r+A)(t+A)

Definition:

An ideal in a ring R is a subring A C R which is closed under multiplication
by elements in R (that is, for all a € A,r € R, we have ar € A and ra € A)
When A C R is an ideal, the quotient R/A = {r + Ajr € R} is called the
quotient ring of R by A.

Check that the zero element in R/A is 0+ A = A.

Check that if R has a 1, then so does R/A, and the identity in R/A is 1 + A.
Check that if R has a 1 and r € R is a unit then r + A is a unit in R/A with
(r+A)7 " =r14+A

Check that if R is commutative, then so is R/A.

Notation

When R is a ring and U C R is a subset, we could write

(u) = Span, U

to denote the smallest subgroup of R (under +) containing U.
We could write
[U]

to denote the smallest subring of R containing U, and we could write

to denote the smallest ideal in R containing U.
When R is a subring of S, and U C S is a subset, we could write

R[U]

to denote the smallest subring of S containing RU U (that R[U] = [RUU])
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When F is a subfield of K and U C K, we could write F(U) to denote the
smallest subfield of K which contains F'UU.

Examples:
1 1 k
<2>—2-Z—{2|kEZ}

Forée(@, we have
1 k
S|l ={=lkeznezt
[2} {2n|k€ ,nEZLT}

()

More generally, if F' is a field then the only ideals in F' are {0} and F.
Examples:
For 2+ 1 € ZJi],

2+ =24+0)Z={2+1i)klk € Z}

[2 4+ 4] = Span{2 +i,—1 + 2i}
(241i) = [2+14] = Span{2 + 4, —1 + 27}

Picture here.
Examples:
For 2 € Z][i]

(2i) = 2Z
[2i] = Span,{2i,4}

Check if it is closed under multiplication

(4k + i20)(4m + i2n)
=(16km — 4nl) + i(8kn + 8lm)

(2i) = Spany {2i, 2} = (20)Z[i] = 2(Z[i)) = {2k + 2|k, | € Z)}

Example:
In C,
Z[i) = {a + bila,b € Z}
Qli] = {a +ibla,b € Q}
Qi) = Q[i]
(since Q[] is already a field, because when a + ib # 0, ﬁ = ot iﬁ)

Theorem (The First Isomorphism Theorem)
When R and S are rings and ¢ : R — S is a ring homomorphism, and K =
Ker¢ C R, K is an ideal in R and R/K = ¢(R).
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Indeed, the map ® : R/K — ¢(R) given by ®(r + K) = ¢(r) is as well defined
ring isomorphism.

Proof:

Exercise.

Good practice!!

There are also second, and third Isomorphism Theorems.

Note:

We can perform the following operations on ideals in a ring R:

If A, B C R are ideals, then so are the each of the followings:

1. AnB
2. A+ B={a+blac Abe B}
3. A-B={Y""_,a;-bjn€Z", each a; € A, each b; € B} C ANB

(a+b)yr=ar+br

(i aibi) - r =300 ai (bir)

In Z, the subgroups are of the form (n) = nZ with n € N.
These are also subrings and ideals.

Given k,l € Z (or in N), what are (k) N (I), (k) + (I) and (k){])

28 November 18th

Example:

Describe all ring homomorphisms ¢ : Z — R where R is a ring.

Solution:

If ¢ : Z — R is a ring homomorphism, then ¢ is also a group homomorphism
(under +).

So ¢ is determined by the value ¢(1) € R.

If ¢(1) = a € R, then

for k € Z,

¢(k-1) = ko(1) = ka

So we have ¢ = ¢, where ¢, : Z — R given by ¢.(k) =k - a.
But also, for ¢ to be a ring homomorphism, we also need

a=¢(1) = ¢(1-1) = $(1) - 4(1) =

Thus, we must have ¢ = ¢, for some a in the ring with a? = a.

An element a € R with a? = a is called idempotent.

Finally, note that if a € R, with a® = a, then the map ¢, : Z — R given by
¢q(k) =k - a is a ring homomorphism because

ba(k+1) = (k+1Da=ka+la= ¢a(k) + ¢a(l)
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and
$a(k - 1) = (kl)a = kla® = (ka)(la) = ¢a(k)¢a(l)
Exercise:
Describe ring homomorphism ¢ : ZxZ — R, ¢ : Z, — R and ¢ : Z, X Z,, — R.
Example:
In Z,,, the subgroups are of the form (d) = d-Z,, where d|n, and these subgroups
are also subrings and ideals.
So the quotient Z,,/d - Z,, is a ring.
We can prove that when d|n, Z,/d - Z, = Z4 as follows.
Define ¢ : Z,, — Z4 by ¢(k) = k. (That is ¢(k mod n) = k mod d)
Then, ¢ is well-defined because if K =1 mod n, then £k =1 mod d.
Also, ¢ is a ring homomorphism and ¢ is surjective.
By the Fisrt Isomorphism Theorem,

Zn/Ker(¢) = Zq4

(as rings)
For k € Z, giving k € Z,

k € Ker(¢p) < ¢(k)=0€Zq
<— k=0€Z4
<~ k=0 modd
= dlk
<— kedZ,

Example:

Show that 2Z % 3Z as rings.

Note that 2Z = 3Z as groups (both are infinite cyclic groups)

We can see that 2Z ¢ 3Z as rings because in 2Z we have 24+2=4=2-2

But in 3Z, there is no element a € 3Z such that a + a = a - a (that is 2a = a?)
Example:

Show that Q[z]/(2% — 2) = Q[v/2].

Solution:

Define ¢ : Qz] — Q3] by 6(f) = /(V3).

Note that when f € Q[z], if f(v2) = A+ BV/2

then f(—v2) = A — B2 (with A, B € Q)

So if f(v/2) =0, then f(—/2) = 0.

So (z — v2) and (z + V/2) are factors of f(z) (in Rz]).

So (2% —2) = (z — V/2)(x ++/2) is a factor of f(z) (in R[z] hence also in Q[z])
If f(v/2) =0, then (22 — 2) is a factor of f(x).

So we can write f(x) = (2% — 2)g(x) for some g € Q[z]

Then f(z) = (22 — 2) (the ideal geenrated by z2 — 2)

Conversely, if f € (2% — 2), then (since (2% —2) = {(2® — 2)g(z)|g € Q[z]} ), we
have f(z) = (22 — 2)g(x) for some g(z) € Q|x].
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Hence, f(v/2) = 0.
Side Note:
More generally, if ¢ € R and R is commutative with 1, then (a) = a- R =
{ar|r € R}.
ar+as =a(r+s),ar - as = alars), (a-r)s = a(rs)
Side Note ends
This shows that Ker(¢) = {f € Q[z]|f(v/2) = 0} = (22 — 2)
Since ¢ : Q[z] — Q[v2] is a surjective ring homomorphism with Ker(¢) =
(2% —2), it follows that
Qla]/(z* — 2) = Qv
Example:
Show that Z[i]/(2 + i) = Zs
Solution:

(2414 = (2+)Z[i] = {2 +3)(k +il)|k,] € Z}
={2+)k+ (-1+2i)lk,l € Z}
= Spany{(2 + 1), (—1+2¢)}

Picture here.

As a group, we saw (informally) that Z[i]/Span{(2 + i), (—1 + 2¢)} = Z5
Cosets, shifting left or right.

(1,1) + H is a generator.

To prove (rigorously) that Z[i]/(2 + i) = Zs as rings, we find a surjective ring
homomorphism ¢ : Z[i] — Zs with Ker(¢) = (2 + i)

Picture revised here.

Define ¢ : Z[i] = Z5 by ¢(a + ib) = 2b — a(mod 5).

¢ is clearly well-defined and surjective.

¢ is a ring homomorphism because for a,b,c,d € Z,

d((a+ib)+ (c+id) =¢((a+c)+i(b+d))
=2(b+d)—(a+c)
=(2b—a)+ (2d - c)
= ¢(a +1ib) + ¢(c + id)

¢ ((a+1b) (c+id)) = ¢((ac — bd) + i(ad + bc))
= 2(ad + bc) — (ac — bd)
= 2ad + 2bc — ac + bd
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d(a+1ib) - p(c+id) = (2b — a)(2d — ¢)

29 November 20th

Example:

Show that Z[i]/(2 4 i) & Zs as rings.

Solution:

Define ¢ : Z — Zs by ¢(a+ib) =a—2b=a+ 3b € Zs

Then, ¢ is clearly well-defined and surjective

Note that ¢ is a ring homomorphism because for a,b,c,d € Z

d((a+1b) + (c+1id)) = ¢((a+c) + i(b+ d))
=(a+c)+3(0b+d)
= (a+ 3b) + (c + 3d)
= ¢(a +1ib) + ¢(c +id)

and
d((a+1ib) - (c+id)) = ¢p((ac — bd) + i(ad + bc))
= (ac — bd) + 3(ad + bc)
d(a+ib) - ¢p(c+id) = (a+ 3b) - (¢ + 3d)
= ac + 3ad + 3bc + 9bd
= ac + 3ad + 3bc — bd € Zs
Since 9 = —1

By the First Isomorphism Theorem,
Z[i] /Ker(¢) = Zs

We claim that Ker¢ = (2 + i)

(Recall that when R is a commutative ring with 1 and a € R, we have (a) =
a-R={arlr € R})

In Z[i],

(2414) = (2+14)Z]]
={2+i)(k+il)|k,1ec R}
={2+)k+ (-1+2i)l|k,l € Z}
= Spany {2 + 1, -1+ 2i}
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If a+1ib € (2+1i) = Spany,{2+14,—1+ 2i}
say a +1ib= (2+ i)k + (=14 24)l = (2k — 1) + i(k + 21)

dla+ib)=a+3b=(2k —1)+3(k+20)
=5k+5l=0¢€Zs
¢(a+1ib) =a+ 3b € Zs
Suppose that ¢(a 4 ib) = 0, that is a + 3b =0 € Zs.
We need to show that there exist k,l € Z such that
(a+1ib) = 2+ i)k + (=1 +2i)l = (2k = 1) +i(k + 2I)

‘We need

That is

Since a +3b=0 mod 5

0=—(a+3b) = (—a— 3b)
= —a+2b modH

and

0 =2(a+ 3b) = 2a+ 6b
=2a+b modbH

So the values k, [ above lie in Z.
Example:

Let R be a commutative ring with 1.
We define the evaluation map

¢ : R[z] — Func(R, R) = R®

by ¢(f) = f

(So ¢ sends the polynomial f(z) = > ,_,axz”, where each a; € R, to the
function f: R — R given by f(z) =Y ,_, axz")

Example:

For f(z) = 2?2 + & € Zy[x], we have 0 # f(X) € Zy[z], but f(z) = 0 for all
T € Zs.
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When R is commutative, ¢ is a ring homomorphism.
(When R is not commutative, its not in R[x]

(a4 bx)(c+ dz) = (ac) + (ad + be)x + bdx?

but in R
(a + bx)(c+ dx) = ac+ adx + bxc + bxdx

)

When R is an infinite field (or an infinite integral domain), the evaluation map
¢ is injective.
(For f € Rlz], ¢(f) =0 € RE so f(z) =0 for all x € R)
We must have that f = 0 € R[z] since a non-zero polynomial of degree n can
only have at most n roots.)
The image of ¢ in R is called the ring of polynomial functions on R.
If R is a finite field, then ¢ is not injective (Since R[] is infinite but R is
finite.)
But, instead, ¢ is surjective:
Indeed, if R = {a1,as,...,a,}, then given by, by, ..., b, € R
We can construct a polynomial function R — R with f(a;) = b; for all i as
follows.
For each 1 < k <mn, let

gu(x) = Hi;ék (z—a;)

Hi;ék(ak - a;)

lifl=k

Thus, gr(a;) 0if 1+ k

Il
—

> brgi(a)
k=1
= Z bi 61

=b;

So we can take

f@) =Y bugi()
k=1

We have the evaluation map ¢ : R[z] — R®. The ring of the polynomial maps
is

¢(R[z]) = Rlz]/Ker(¢)

When R is a finite field with |R| = n.
Show, as an exercise, that
Ker¢ = (2" — x)

(Since R* = R\ {0} is a group with n — 1 elements.
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So "1 =1 for all 2 € R by Lagrange’s Theorem.
Hence, ™ = « for all z € R.)

In algebraic geometry, we study varieties, when S C F[zy,...,z,] with F a
field.
The variety of S is

V(S) = {z € F"|f(z) =0 for all f € S}
When f € Flzy,...,xz,], we write

VHD =V(/)

Photos Here.
Given X C F", the ideal of X is the ideal

I(X)={f €Flxy,...,zn]|f(z) =0 for all x € X}

The ring of polynomial functions A(X) on a variety X is the ring of functions
f + X — R such that there is a polynomial p € F[z1,...,z,] for which f(z) =
p(z) for all z € X.

We have the evaluation map

¢:Flxy,...,x,) = FX ={f: X = F}

A(X) = Image()
>~ Flay,...,z,]/Kero

Show that Ker¢ = I(X)

30 November 22nd
When X is a set and R = P(z) = {A|A C X}, we define
A+B=(AUB)\ (AN DB)
A-B=ANB

A picture here.

Chapter 10 Factorization in Commutative Rings
Example

Solve ax + by = d = ged(a, b)

If p is irreducible, then

plab = (pla) or plb

pbip2..--Pr=4q192 -.-qm, p1|Qi for some 1.
Definition:
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Let R be a commutative ring with 1. For a,b € R, we say a divides b, or a is
a factor of b, or b is a multiple of a, and we write a|b when b = ac for some
ceR.

For a,b € R, we say that a and b are associates and we write a ~ b, when alb
and b|a.

Exercise:

Verify each of the following:

1. a0 for all a, and Ola < a = 0.

2. lla for all a € R, and a|l <= a is a unit.
3. alb <= be (a) < (b) C (a)

4. Association is an equivalence relation.

5

.Fora,be R, a~b < (a)=(b)
<= a and b have the same divisors and the same multiples

Definition:
In a commutative ring, R, with 1, a principle ideal is the ideal of the form

A = (a) = {ar|r € R}

for some a € R.

Exercise:
Show that when R is a commutative ring with 1 and a,b € R, we have (a)(b) =
(ab).
Proof:
(a)(b) = {Z(a 1) (b si)|ri, s € R}
i=1
= {ab (Z Ti8i> |T’i, S; € R}
i=1

={ab-t|t € R} = (ab)

Definition

Let R be a commutative ring with 1.

1. An element in a ring, a € R, we say a is reducible when a is a non-zero,
non-unit, such that a = b - ¢ for some non-units b, c € R.

2. For a € R, we say that a is irreducible when a is a non-zero, non-unit
and for all b,c € R, if a = b - ¢, then either b is a unit or ¢ is a unit.

3. For p € R, we say that p is prime when it has the property that for all
a € R, if plab, p is a non-zero, non-unit, then pla or p|b.

(In integer, irreducible and prime are the same thing.)
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Exercise:
Verify the following:
If R is a commutative ring with 1 and a,b € R with a ~ b,

a=0 b=0

b is reducible

<

a is a unit <= b is a unit
a is reducible <=
et

a is irreducible b is irreducible

a is a prime <= b is a prime

If R is an integer domain (So R is commutative with 1 and R has no zero
divisors), then every prime in R is irreducible.
Proof:
Let p € R be prime. (So for all a,b € R, if p|ab, then pla or p|b)
Suppose p = a - b, where a,b € R. (We need to show that a is a unit or b is a
unit)
Since p = ab, we have plab, so either p|a or p|b.
Suppose pla, say a = p - u where u € R
Thenp=ab=p-u-b
Sp—pub=0
Sop-l—pub=0
Sop(l—ub)=0
Since R has no zero divisors and p # 0, 1 — ub = 0.
Thus, u-b=1.
So b is a unit.
Similarly, if p|b, then a is a unit.
Example:
In Z2, the association classes are {0}, {1,5,7,11},{2,10}, {3, 9}, {4, 8}, {6}.
The primes in Z;5 are 2 and 3. (and their associates)
Multiplication table here. See picture.
and the reducible elements are
3,4,6

(and associates)
and the irreducible elements are

(and associates) (that is 10)
Note that 3 reduces as
3=3-9=3-3-3=3-3-3-3-3=...

Definition:

A Euclidean domain (or ED) is an integral domain, R, together with a func-
tion, N : R\ {0} - N ={0,1,2,...} (Called the Euclidean norm on R) such
that for all a,b € R with b # 0)
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There exist ¢, € R, such that a = b- ¢+ r and either r =0 or N(r) < N(b)
Examples:

Z is a ED with Euclidean norm given by N (k) = |k|.

When F is a field, F is a ED and any function N : F'\ {0} — N is a Euclidean
norm.

When F is a field, the polynomial ring F[z] is a Euclidean domain with norm
given by N(f) = deg(f).

Definition:

A principal ideal domain or PID is an integral domain in which every ideal
is principal.

Every Euclidean domain is a principal ideal domain.

31 November 25th

alb when b = ac for some c.

alp <= be (a) < (b) C (a)

a ~ b when alb and bla < (a) = (b)

We say that a is irreducible when «a is a non-zero, non-unit and a = b-¢ <=
b is a unit or ¢ is a unit

a is prime when a is a non-zero, non-unit and albc = (al|b or a|c)

R is a Euclidean Domain when R is an integral domain with a function N :
R {0} — N (called a Euclidean Norm on R) such that for all a,b € R, with
b # 0. There exists a quotient remainder, g, € R such that a = ¢b 4+ r with
r=0or N(r) < N(b).

R is a principal ideal domain when R is an integral domain and every ideal is a
principal ideal. (For every ideal A in R, A = (a) for some a € R).

Example:

Z,7,,F Flx]

Z[z] is not a P.I.D.

For example,

(2,z) ={f(z) = i crat|eg is even}
k=0

is not principal.
Example:
Flz,y] is not a PID
For example,
<£L‘, y> = {f($7y) = ch,lxkyl|co,0 = 0}
={f € Flz,4]f(0,0) = 0}

is not principal.
A unique factorization domain, or a U.F.D, is an integral domain R in which
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1. Every non-zero, non-unit a € R can be written as a product
a=aiaz...q
where [ € Z1 and each a; is irreducible.

2. Fora € R, if a = ayay...a; = biby...b,, where [,m € Z and each a; and
b; is irreducible. Then ! = m, and there is a permutation o € S; such that
ap ~ by(yy for all k. (Up to order and up to association.)

Example:

Z is a UFD when F is a field. F[z] is a UFD.
Z[\V3] = {a+ bV3ila,b € Z} C C is not a UFD.
Example:

(1+\/§z‘)(1—\/§z‘):4:2.2

and 1+ v/3i and 2 are irreducible because if we define N(u) = ||u||? for u €
Z[\/3i].

So N(a+ bv/3i) =a® +3b> €N

Then N(uv) = N(u) - N(v).

Sou=0 < N(u)=0

uis a unit <= N(u) = 1.

If w is reducible with w = u - v, with u,v non-units. Then N(w) is composite
with N(w) = N(u)N(v)

So if 1 + /3 or 2 were reduced, they would necessarily factor into elements of
norm 2, and there are no such elements in Z[v/3i].

Also, 1+ +/3i and 2 are not associates since association differ by multiplication
by a unit and the only units are +1.

Our goal is to show that every Euclidean Domain (ED) is a principal ideal
domain (PID), and that every PID is a UFD.

Theorem:

Every Euclidean Domain (ED) is a principal ideal domain (PID).

Proof:

Let R be a Euclidean Domain with N : R\ {0} — N.

Let A be an ideal in R.

If A= {0}, then A = (0)

Suppose A # {0}. Choose an element in the ideal, 0 # v € A of smallest
possible norm.

(Using Well-Ordering Property).

We claim that the ideal is generated by 1 element, A = (a).

Since a € A, we have (a) C A.

Write b= ¢q-a+r with r =0 or N(r) < N(a).
Sincer=b—q-ac Aasbe A

We cannot have N(r) < N(a) as we chose a to be the minimum.

So we must have r = 0.

Thus, b=q-a € (a).
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and so A C (a).
Example:
Determine whether Z[H‘T\/ﬁi] is a PID but not a ED. (using any norm).
To prove that every PID is a UFD. We use two lemmas.
Definition:
A ring, R is called Noetherian when it has the property that for any ascending
chain of ideals
Ay C A CA3C ...

in R, there exists n € Z* such that A, = A, for all k > n.
Lemma I:
Every PID is Noetherian.
Proof:
Let ay,a2,a3 € R with
(a1) € (az) € (a3) € ...

Note that (Jp—,(ax) is an ideal.

Choose a € R so that | J;—, (ax) = (a).

Since a € Jpo (ax), we have a € (a,,) for some n € Z.

Then, for k > n, we have (ax) € U;Z(a;) = (a) C (an) € (ar)

and so (ar) = (ay).

Remind: In an integral domain, every prime element is irreducible.
Lemma II:

Let R be a PID. Let a € R.

1. If a is irreducible then (a) is maximal amongst proper ideals. (This means
that for b € R, if (a) C (b) € R. (If and only if statement. Prove the
other direction for yourself. Converse might need non-unit and non-zero?)
Then, either (b) = (a) or (b) = R.)

2. If a is irreducible, then a is prime.

Proof:

Let @ € R be irreducible. Since a is a non-zero, non-unit. (a) # {0} and
(a) # R.

Let b € R with (a) C (b) C R.

Since (a) C (b), we have bla, say a = b - ¢ with ¢ € R.

Since a is irreducible, either b is a unit or c is a unit.

If b is a unit, then (b) = R.

If ¢ is a unit, then since a = b - ¢, we have a ~ b.

So (a) = (b).

Part 2 as an exercise.
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32 November 27th

If R is a Euclidean Domain.
Every Euclidean Domain is a principal ideal domain.
Lemma II
Proof:
Let a € R, a irreducible.
Let b,c¢ € R with albc.
Suppose a b, so b ¢ (a).
Then (a) C (a) + (b) = {ar + bs|r, s € R}
Since a is irreducible, by Part (1), (a) is maximal amongst proper ideals in R.
So (a) + (b) = R.
In particular, 1 € (a) + (b) = {ar + bs|r,s € R}
Say 1 = ar + bs.
Thenc=c-1=c(ar+bs)=a-cr+bc-s € (a)
As a € (a) and bc € (a) since albe.
Since ¢ € (a), we have alc.
Thus, a is prime.
Theorem:
Every PID is a UFD.
Proof:
Let R be a PID. Let a € R be a non-zero, non-unit.
We claim that a has an irreducible factor in R.
Let a € R be a non-zero, non-unit.
If @ is irreducible, then we are done since ala.
Suppose that a is reducible, say a = a1b; where a; and b; are non-units.
Note that (a) C (a1) indeed since aq|a, we have (a) C (a1) and since by is not a
unit.
a and a; are not associates.
(If we had a ~ a1, say a = a1 - u where u is a unit, then since a = a1b;, so
ai1u = aiby, so by = u by cancellation.)
If, a; is irreducible, we are done. (since aq|a).
Suppose a; is reducible, say that a; = asbs where as and by are non-units.
Note that as above, (a1) C (az).
If a9 is irreducible, we are done, and otherwise we repeat the procedure above.
The procedure has to end afte finitely many steps because the ring is Noetherian.
(by Lemma I).
and
(a) C (a1) C (az2) C ...

We next claim that we can factor non-zero, non-units completely into irre-
ducibles.

We can write @ = ajas...a; for some [ € ZT and some irreducible elements
a; € R.

If @ is already irreducible, then there is nothing to prove. (Since ala)
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Suppose a is reducible, by our previous claim, we can choose an irreducible
factor a; of a.

Say a =aq - by.

Note that b; cannot be a unit. (Since if b; was a unit, we could have a ~ ay,
but a is reducible and a; is not.)

As above, we have

(a) C (b)

If by is irreducible, we are done. (Taking as = by)

Suppose that b; is reducible, choose an irreducible factor, as of by and write
bl = (LQbQ

As above, by must be a non-unit.

And we have (by) C (b2), if be is irreducible, we are done. (Taking az = bs so
a = ajasas)

Otherwise, repeat.

The procedure must end after finitely many steps because R is Noetherian.
Finally, we claim that if @ = ajas...a; = biby...b,, where I,m € ZT, and
each a; and each b; is irreducible, then [ = m. and after reordering the b;, if
necessary, we have a; = b; for all 1 <7 <.

Since a; is irreducible, by Lemma II, it is also prime.

Since aq|a, that is a1|b1bs . .. by, by the prime property and induction, we must
have a;|b; for some j.

After reordering, we can say that a1|b;.

Because b, is irreducible, by the definition of irreducible, we cannot factor this
into non-zero, non-units.

The only factors of b; are the units in R and the associates of b; in R.

Since a1 is not a unit, and aq|by, a1 ~ b1, say by = a; - u where w is a unit in R.
Then

a1a2...al:b1b2"'bm

=a1U'b2~b3...bm

So as0as ...qp :u-b2~b3...bm

By cancellation, (and ubs is irreducible).

By a suitable induction hypothesis, the proof is done. | = m, after reordering,
a; ~b; for2<i<l=m.

Examples:

To study the problem of whether the ring

Z[Vdi) is a UFD
where d € Z*, it is useful to consider the , field norm on Q[v/di] given by
N(z) = ||z||?, that is N(a 4 bV/di) = a® + db*> € Q
Note that for z € Q[v/di] (or even for z € C, 2 =0 <= N(z) =0)
For z,w € Q[\/di] (or for z,w € C )

N(zw) = N(z) - N(w)
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For z € Z[\/di], N(z) € N.

It follows that for z € Z[v/di], z is a unit <= N(z) = 1.

Examples:

We already used that above field norm to show that Z[/34] is not a UFD.

(1+V3i)(1-V3i)=4=2-2
and 1+ v/3i and 2 are irreducible.
And 1+ v/3i and 2 are not associates.

14 V3i 2

Picture here.

Example:

Show that Z[+/2i] is a ED (hence also a PID and UFD).
And the field norm

N(z) = ||2]]?
is also a Euclidean norm.
Solution:
Let z,w € Z[v/2i] with w # 0.
Z=w-q+r
N(r) < N(w)

We have 2 € Q(v/2i)
Say Z =z +y- V2i with z,y € Q,
Choose a,b € Z with

DN | =

|z —al <

and

N | =

ly— bl <
Let ¢ = a + bv/2i, and r = z — wq.
Then
N(r) = [Ir|]* = ||z — wql|?

_ 212 2

= [lwl[*ll - —dll

= [|w|*[|(z —a) + (y — b)V2il?

< |lwll* (llz = al|* + 2[ly — b]])

1 2
< ||wl|? (4 + 4>

= 2wl

3

= i]\f(w)2
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So N(r) < N(w).
Exercise:

Show that Z[1*¥19] is a PID but not a ED.

33 November 29th

Example: Z[z] are F[z,y] are UFD’s but not a PID’s.

(The proof that Z[z] and F[z,y] are UFD’s is at the end of the last chapter.)
Examples:

Show that R = Z[“*¥1%] is a PID but not a ED.

Solution:

Suppose for a contradiction, that R = Z[HT‘/@] is a ED with Euclidean norm
N:R\{0} > N.

Remark:

If all the non-zero elements in R were units, then R would be a field, so it would
be a ED.

We can draw a picture of the ring.

Picture here.

Check that the only units in R are +1

Choose a non-zero, non-unit a € R, a ¢ {0,+1} of smallest possible Euclidean
norm.

By the definition of a Euclidean norm for all € R, we can choose ¢ = ¢(z),r =
r(z) € R such that © = ¢-a+r with r =0 or N(r) < N(a).

Taking x = 2, we see that there exists

2=qa+r

for some ¢ € R and some r with » =0 or N(r) < N(a)

By our choice of a, we must have r € {0, £1}, so ga = 2 + r with r € {0, 1},
that is ¢ - a € {1,2,3}

Since a divides one of the elements 1,2, 3, we must have

a=+1,+2 43

and a # £1 so a € {£2,+3}.

1+19:
2

Taking x = , we have

1+ /19
T e

for some r € {0, £1}.

So ga = HT‘/@ — r for some r € {0,+1}, that is

1419 1+ 19 3+ /19
2 2 9

}

q-ac{
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So a must have a factor of one of the elements

—1++19 1419 3+ 19

2 2 ’ 2

But +2, +3 are not factors (Since ||*1+f‘/1791||2 = ||1+T‘/E||2 = 5and ||3+T\/T91H2 =
7)

This gives the desired contradiction.

We sketch a proof that R = Z[H'T‘/@] is a PID.

Let A be any ideal in R.

If A= {0}, then A = (0).

Suppose A # {0}

Choose a non-zero element 0 # a € A of smallest possible field norm ||a||?.

We claim that A = (a).

Since a € A, we have (a) C A.

Let b € A be arbitrary.

Picture here.

By adding an integer multiple of a and

We obtain a point ¢ € A which lies in the parallelogram with vertices at
0 a1+\/ﬁia 3+\/ﬁia
J 2 » T2 .

HT\/TQ’@ to b.

Also, ¢ —0,c—a,c — HT\/@a and ¢ —
By our choice of a, if ¢ is not equal to one of these vertices, then

HT\/TQZ‘CLEA.

lle = vl* <lall*

for all 4 vertices v.

If ¢ # v for any of the four v, then ¢ must lie in the shaded region.
Picture here.

Thus, 2¢ € A lies in the larger shaded region.

But all the points in the larger shaded region close to one of the points.

1+v19i/2,3 +v19i/2,5 + V19i/2

to within a distance of ||al|.
Picture here.
Thus, if ¢ is not one of the vertices of the parallelogram, 2¢ would be equal to

one of the point
L+ V19 3+V19i 5+ V19

2 ’ 2 ’ 2
So that
14+v19% 3+4++v19% 5+ 19
c= a, a, a
4 4 4
Play with these points to obtain a contradiction.
Note:

To study rings of the form Z[\/&Z] with d € Z7, it is useful to make use of the
"field norm”.
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In Q[v/di] given by N(z) = ||z||?, that is
N(a+bVdi) = a® + db?

To study rings Z[v/d] where d € Z* (with d not a perfect square.)
It is useful to use the ”field norm” in Q[v/d] given by N(a + bv/d) = a® — db?
(or by N(a +bVd) = |a® — db?|)

34 December 2nd

Remark:
In a ring, R,
a~b < (a)=(b)

alb <= (b) C (a)

m is irreducible, <= (m) is maximal amongst proper principal ideals.
P is prime <= plab = p|a or p|b

(a)(b) = (ab) € (q) = ((a) < (p) or (b) < (p))
Definition:
Let R be a commutative ring with 1.

1. For ideals A and B in Rsometimes we write A|B when B C A.

2. For an ideal M in R, we say that M is maximal when it is maximal
amongst all proper ideals, that is M C R and for all ideals A in R.

If M C AC R, then either A= M or A= R.

3. For a proper ideal P in R, we say that P is prime when P C R and for
all ideals A, B in R.

If AB C P, then either A C P or B C P.

Note:
For an ideal P with a commutative ring with 1, P is prime ideal if and only if
P has the property that for all a,b € R, if a-b € P, then (a € P or b € P).
Proof:
Suppose P be a prime ideal in R, let a,b € R with a-b € P.
Then

(a)(b) = (ab) € P

(Commutative used here)

So since P is prime, either (a) C P or (b) C P.

If (a) C P, then a € P while if (b) C P, then b € P.

Conversely, let P be any proper ideal and suppose that for all a,b € R, ifab € P,
then (a € P or b € P).

Let A and B be ideals in R with AB C P.
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Suppose A ¢ P and choose a € A with a ¢ P.
Let b € B be arbitrary.

Then a-be AB C P.

Then either a € P or b € P.

Buta¢ P,sobe P.

Thus, B C P as required.

Theorem:

Let R be a commutative ring with 1.

1. For an ideal M € R, M is maximal iff R|M is a field.
2. For an ideal P in R, P is prime iff R|P is an integral domain.
Proof:

1. Suppose M is maximal.
Since M C R, we have a ¢ M.
So 1+ M #0+ M in R|M.

Since R is commutative, so is R|M, let a € R with a ¢ M so that a+ M #
0+ M € R|M.

Since a ¢ M, we have

McCM+(a)={m+arlre R,me M}

Because M is maximal, we have M + (a) = R.

So in particular, 1 € M + (a), so we can say
l=m+a-r

where m € M,r € R.
Then, we have
ar+ M =1+ M

That is,
(a+M)r+M)=14+M
and so a + M is invertible (with inverse r + M).
Suppose, conversely, that R|M is a field.
Since 04+ M # 14+ M in R|M.
We have 1 ¢ M so M C R.
Let A be any ideal in R with M C A, we need to prove that A = R.

Since M C A, we can choose a € A with a ¢ M, thena+ M #0+ M €
R|M.

So a 4+ M has an inverse in R|M.
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Say
(a+M)b+M)=1+M

where b € R.

Then
ab+ M =1+ M

So 1 —ab =m for some m € M, hence 1 = ab+m € A. (Since a € A so
a-be Aandme M C A)

Since 1 € A, we have A = R, as required.

2. Let P be an ideal in R.
Suppose R|P is an integral domain. (No zero divisors).

Since R|P is an integral domain,
0+P#1+P

Sol¢P.

Hence P C R.

Let a,b € R with ab € P.
Since ab € P, ab+ P =0+ P € R|P

(a+P)(b+P)=0+P € R|P

Since R|P has no zero divisors, we can say that either the element a+ P =
0+Porb+P=0+Pin R|P.

Hence, either a € P or b € P.
Thus, P is prime.

Converse is left as a exercise.

Example:

When F is a field, and f € Flx] is irreducible (in the polynomial ring F|x])
F[z] is a E.D. (Hence a PID)

Since f is irreducible,

(f) is maximal amongst proper principal ideals

Hence among proper ideals, so (f) is a maximal ideal in F[z].
Thus, Flz]/(f) is a field.

(If a is a root of f(z) in a bigger field, then F(a) = Fa] = F[z]/(a))
Example:

Photo here.

Z[\/3i] is not a UFD.

For example,

(1+V3i)(1—-V3i)=4=2-2
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and 14+ +/3i and 2 are irreducible a_nd 1 4 1/3i are not associates of 2.
But Z[/3i] C Z[1+T\/§z] and Z[lJrT‘/‘g”] is a ED with Euclidean norm

N(z) = |l2II”

In Z[v/3i], we have 1 4+ v/3i ~ 2.
Example:
Z[\/5i] is not a UFD

(14+V5i)(1-V56i)=6=2-3
2 is irreducible. (2) is maximal among principal proper ideals.

But

(2) € (2,1 + v/5i)
Verify that (2,1+ v/5i) (2,1 + V/5i) = (2).
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